Advertisement

Wireless Personal Communications

, Volume 101, Issue 1, pp 181–200 | Cite as

Transmit Precoding Based Low Complexity Codebooks and Finite Feedback Rate for Space Shift Keying MIMO Systems

  • Mohammed Al-AnsiEmail author
  • Syed Alwee Aljunid
  • Essam Sourour
Article

Abstract

Transmit Precoding (TPC) considerably improves the performance of Space Shift Keying (SSK) systems. Codebook-based TPC is able to tackle several difficulties encountered by non-codebook TPC techniques. Channel State Information (CSI) is required at the receiver only, and the index of the best codeword is easily identified and fed-back from receiver to transmitter with low rate message. Motivated by these advantages, this paper contributes to the codebook-based TPC in the following aspects. First, the paper presents a Factorized form of the Full-Combination (FC) codebook with phase rotation only, and shows that only four phases are needed, which significantly simplifies practical implementation. As a second contribution, the paper introduces two statistically filtered codebooks: Index-Filtration FC and Average-Filtration FC. These codebooks considerably reduce system complexity due to their small codebook size, while maintaining almost the same BER of the FC codebook. As a third contribution, this paper proposes a new codeword selection criteria based on Long term statistics of the CSI (LCSI), instead of the conventional criteria using instantaneous CSI. This reduces the feedback rate of the index of the selected codeword while providing performance improvement over non-precoded SSK. Simulation results show the effectiveness of the proposed codebooks and the performance improvement with LCSI selection criteria.

Keywords

Spatial modulation Transmit precoding Low complexity codebook Limited feedback channel, MIMO 

Notes

References

  1. 1.
    Mesleh, R., Haas, H., Sinanovíc, S., Wook Ahn, C., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.CrossRefGoogle Scholar
  2. 2.
    Yang, P., Renzo, M. D., Xiao, Y., Li, S., & Hanzo, L. (2015). Design guidelines for spatial modulation. IEEE Communications Surveys & Tutorials, 17(1), 6–26.  https://doi.org/10.1109/COMST.2014.2327066.CrossRefGoogle Scholar
  3. 3.
    Wang, C. X., Haider, F., Gao, X., You, X. H., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.  https://doi.org/10.1109/MCOM.2014.6736752.CrossRefGoogle Scholar
  4. 4.
    Jeganathan, J., Ghrayeb, A., Szczecinski, L., & Ceron, A. (2009). Space shift keying modulation for MIMO channels. IEEE Transactions on Wireless Communications, 8(7), 3692–3703.  https://doi.org/10.1109/twc.2009.080910.CrossRefGoogle Scholar
  5. 5.
    Jeganathan, J., & Ghrayeb, A. Generalized space shift keying modulation for MIMO channels. In Proceedings of the 2008 IEEE 19th international symposium on personal, indoor and mobile radio communications,PIMRC’08, Cannes, September 2008 (pp. 1–5).  https://doi.org/10.1109/pimrc.2008.4699782.
  6. 6.
    Younis, A., Serafimovski, N., Mesleh, R., & Haas, H. Generalised spatial modulation. In Proceedings of the 2010 Asilomar 4th conference signals, systems and computers, Asilomar’10, 710 Nov. 2010 November 2010 (pp. 1498–1502).  https://doi.org/10.1109/acssc.2010.5757786.
  7. 7.
    Renzo, M. D., Haas, H., Ghrayeb, A., Sugiura, S., & Hanzo, L. (2014). Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation. Proceedings of the IEEE, 102(1), 56–103.  https://doi.org/10.1109/JPROC.2013.2287851.CrossRefGoogle Scholar
  8. 8.
    Luna-Rivera, J. M., Gonzalez-Perez, M. G., & Campos-Delgado, D. U. (2014). Improving the performance of spatial modulation schemes for MIMO Channels. Wireless Personal Communications, 77(3%@ 1572–834X), 2061–2074,  https://doi.org/10.1007/s11277-014-1624-3.
  9. 9.
    Yang, P., Xiao, Y., Yu, Y., & Li, S. (2011). Adaptive spatial modulation for wireless MIMO transmission systems. IEEE Communications Letters, 15(6), 602–604.  https://doi.org/10.1109/LCOMM.2011.040711.110014.CrossRefGoogle Scholar
  10. 10.
    Younis, A., Mesleh, R., Haas, H., & Grant, P. M. Reduced complexity sphere decoder for spatial modulation detection receivers. In Proceedings of the 2010 IEEE global telecommunications conference, GLOBECOM’10, December 2010 (pp. 1498–1502).  https://doi.org/10.1109/glocom.2010.5683993.
  11. 11.
    Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008). Spatial modulation: Optimal detection and performance analysis. IEEE Communications Letters, 12(8), 545–547.  https://doi.org/10.1109/lcomm.2008.080739.CrossRefGoogle Scholar
  12. 12.
    Yang, P., Xiao, Y., & Guan, Y. L. (2016). Single-carrier SM-MIMO: A promising design for broadband large-scale antenna systems. IEEE Communications Surveys & Tutorials, 18(3), 1687–1716.  https://doi.org/10.1109/COMST.2016.2533580.CrossRefGoogle Scholar
  13. 13.
    Chen, J., & Xu, X. (2017). Transmission optimized generalized spatial modulation over correlated fading channels. Wireless Personal Communications, 94(3%@ 1572-834X), 1003–1015,  https://doi.org/10.1007/s11277-016-3664-3.
  14. 14.
    Maleki, M., Bahrami, H. R., Beygi, S., Kafashan, M., & Tran, N. H. (2013). Space modulation with CSI: Constellation design and performance evaluation. IEEE Transactions on Vehicular Technology, 62(4), 1623–1634.  https://doi.org/10.1109/TVT.2012.2232686.CrossRefGoogle Scholar
  15. 15.
    Garcia-Rodriguez, A., Masouros, C., & Hanzo, L. (2015). Pre-Scaling optimization for space shift keying based on semidefinite relaxation. IEEE Transactions on Communications, 63(11), 4231–4243.  https://doi.org/10.1109/TCOMM.2015.2470656.CrossRefGoogle Scholar
  16. 16.
    Lee, M. C., Chung, W. H., & Lee, T. S. (2015). Generalized precoder design formulation and iterative algorithm for spatial modulation in MIMO systems with CSIT. IEEE Transactions on Communications, 63(4), 1230–1244.  https://doi.org/10.1109/TCOMM.2015.2396521.CrossRefGoogle Scholar
  17. 17.
    Yang, P., Xiao, Y., Zhang, B., El-Hajjar, M., Li, S., & Hanzo, L. (2015). Phase rotation-based precoding for spatial modulation systems. IET Communications, 9(10), 1315–1323.  https://doi.org/10.1049/iet-com.2014.1065.CrossRefGoogle Scholar
  18. 18.
    Yang, P., Guan, Y. L., Xiao, Y., Renzo, M. D., Li, S., & Hanzo, L. (2016). Transmit precoded spatial modulation: Maximizing the minimum Euclidean distance versus minimizing the bit error ratio. IEEE Transactions on Wireless Communications, 15(3), 2054–2068.  https://doi.org/10.1109/TWC.2015.2497692.CrossRefGoogle Scholar
  19. 19.
    Renzo, M., & Haas, H. (2010). Improving the performance of space shift keying (SSK) modulation via opportunistic power allocation. IEEE Communication Letters, 14(6), 500–502.  https://doi.org/10.1109/lcomm.2010.06.100163.CrossRefGoogle Scholar
  20. 20.
    Masouros, C. (2014). Improving the diversity of spatial modulation in MISO channels by phase alignment. IEEE Communications Letters, 18(5), 729–732.  https://doi.org/10.1109/LCOMM.2014.031414.140233.CrossRefGoogle Scholar
  21. 21.
    Yang, P., Xiao, Y., Li, S., & Hanzo, L. (2016). A low-complexity power allocation algorithm for multiple-input multiple-output spatial modulation systems. IEEE Transactions on Vehicular Technology, 65(3), 1819–1825.  https://doi.org/10.1109/TVT.2015.2410252.CrossRefGoogle Scholar
  22. 22.
    Veedu, M. S., Murthy, C. R., & Hanzo, L. (2016). Single-RF spatial modulation relying on finite-rate phase-only feedback: Design and analysis. IEEE Transactions on Vehicular Technology, 65(4), 2016–2025.  https://doi.org/10.1109/TVT.2015.2424960.CrossRefGoogle Scholar
  23. 23.
    Yang, P., Xiao, Y., Zhang, B., Li, S., El-Hajjar, M., & Hanzo, L. (2015). Power allocation-aided spatial modulation for limited-feedback MIMO systems. IEEE Transactions on Vehicular Technology, 64(5), 2198–2204.  https://doi.org/10.1109/tvt.2014.2339297.CrossRefGoogle Scholar
  24. 24.
    Wu, L., Chen, J., Yang, H., & Lu, D. (2011). Codebook design for LTE-A downlink system. In IEEE Vehicular Technology Conference (VTC Fall), 5–8, 1–5.  https://doi.org/10.1109/VETECF.2011.6092993.Google Scholar
  25. 25.
    Love, D. J., Heath, R. W., Lau, V. K. N., Gesbert, D., Rao, B. D., & Andrews, M. (2008). An overview of limited feedback in wireless communication systems. IEEE Journal on Selected Areas in Communications, 26(8), 1341–1365.  https://doi.org/10.1109/JSAC.2008.081002.CrossRefGoogle Scholar
  26. 26.
    Lee, J., Han, J.-K., & Zhang, J. (2009). MIMO Technologies in 3GPP LTE and LTE-Advanced. EURASIP Journal on Wireless Communications and Networking, 2009(1), 302092.  https://doi.org/10.1155/2009/302092.CrossRefGoogle Scholar
  27. 27.
    Lee, M. C., Chung, W. H., & Lee, T. S. Precoder design for space shift keying in MIMO systems with limited feedback. In Symposium IEEE 25th APIMRC, Sept. 2014 (pp. 6–10).  https://doi.org/10.1109/pimrc.2014.7136122.
  28. 28.
    Masouros, C., & Hanzo, L. (2016). Constellation randomization achieves transmit diversity for single-RF spatial modulation. IEEE Transactions on Vehicular Technology, 65(10), 8101–8111.  https://doi.org/10.1109/TVT.2015.2513380.CrossRefGoogle Scholar
  29. 29.
    Noh, H., Kim, Y., Lee, J., & Lee, C. (2015). Codebook design of generalized space shift keying for FDD massive MIMO systems in spatially correlated channels. IEEE Transactions on Vehicular Technology, 64(2), 513–523.  https://doi.org/10.1109/tvt.2014.2324822.CrossRefGoogle Scholar
  30. 30.
    Lee, M. C., Chung, W. H., & Lee, T. S. (2015). Limited feedback precoder design for spatial modulation in MIMO systems. IEEE Communication Letters, 19(11), 1909–1912.  https://doi.org/10.1109/LCOMM.2015.2475265.CrossRefGoogle Scholar
  31. 31.
    Al-Ansi, M., Aljunid, S. A., & Sourour, E. (2017). Performance improvement of space shift keying MIMO systems with orthogonal codebook-based phase-rotation precoding. Wireless Communications and Mobile Computing, 2017, 1–12.  https://doi.org/10.1155/2017/4359843.CrossRefGoogle Scholar
  32. 32.
    Yang, P., Xiao, Y., Yu, Y., Li, L., Tang, Q., & Li, S. (2013). Simplified adaptive spatial modulation for limited-feedback MIMO systems. IEEE Transactions on Vehicular Technology, 62(6), 2656–2666.  https://doi.org/10.1109/TVT.2013.2242502.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer and Communication EngineeringUniversity Malaysia Perlis (UniMAP)ArauMalaysia
  2. 2.Department of Electrical Engineering, College of EngineeringPrince Sattam bin Abdulaziz UniversityWadi AddawasirSaudi Arabia

Personalised recommendations