Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Research Challenges, Trends and Applications for Future Joint Radar Communications Systems

  • 618 Accesses

  • 8 Citations


The future Internet of Things will integrate sensing and wireless communications. Among the multiple types of sensors to be used, sensors based on the radar principles are of interest for several applications, namely automotive. Dual functionality devices that integrate reflectometry and communication capabilities will be important to reduce development costs through the reuse of modules and to optimise the usage of radio resources, e.g. spectrum. This paper reviews the main trends that push for the merging of radar type sensors and wireless communications (RadCom). It presents the most important use cases that can be currently foreseen and identifies the main technology trends and issues to reach a mature technology, focusing on OFDM type waveforms that will enable a smooth integration with 4G and 5G.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    ETSI TS 102 921 V2.1.1. (2013). Machine-to-machine communications (M2M); mIa, dIa and mId interfaces. Sophia-Antipolis: ETSI, Dec. 2013.

  2. 2.

    GPP TS 22.368. (2017). Service requirements for machine-type communications (MTC). 3GPP, January 2017.

  3. 3.

    XeThru. (2018). Single-chip radar sensors with sub-mm resolution. https://www.xethru.com/. Accessed 2 Feb 2018.

  4. 4.

    Lien, J., Gillian, N., Karagozler, M., Amihood, P., Schwesig, C., & Olson, E., et al. (2016). Soli: Ubiquitous gesture sensing with millimeter wave radar. In: ACM transactions on graphics (vol. 35, no. 4, artc. 142), Jul. 2016.

  5. 5.

    Franken, G. E. A., Nikookar, H., & Genderen, P. V. (2006). Doppler tolerance of OFDM-coded radar signals. In: 2006 European radar conference (pp. 108–111).

  6. 6.

    Hara, S., & Prasad, R. (2003). Multicarrier techniques for 4G mobile communications. Norwood: Artech House Inc.

  7. 7.

    Ruck, G. T. (1970). Radar cross section handbook. New York: Plenum Press.

  8. 8.

    Sit, Y. L., Reichardt, L., Sturm, C., & Zwick, T. (2011). Extension of the OFDM joint radar-communication system for a multipath, multiuser scenario. In: 2011 IEEE RadarCon (RADAR) (pp. 718–723).

  9. 9.

    Sit, Y. L., & Zwick, T. (2014). MIMO OFDM radar with communication and interference cancellation features. In 2014 IEEE radar conference (pp. 265–268).

  10. 10.

    Gu, J. F., Moghaddasi, J., & Wu, K. (2015). Delay and doppler shift estimation for OFDM-based radar-radio (RadCom) system. In 2015 IEEE international wireless symposium (IWS 2015) (pp. 1–4).

  11. 11.

    Harding, J., et al. (2014). Vehicle-to-vehicle communications: Readiness of V2V technology for application (report no. DOT HS 812 014). Washington: National Highway Traffic Safety Administration (NHTSA).

  12. 12.

    Angelica, A. D. (2013). Google’s self-driving car gathers nearly 1 GB/s. http://www.kurzweilai.net/googles-self-driving-car-gathers-nearly-1-gbsec, May 4, 2013. Accessed 2 Nov 2016.

  13. 13.

    SAS. (2016). Are you ready for your smart car? http://www.sas.com/en_us/insights/articles/big-data/the-internet-of-things-and-connected-cars.html. Accessed 2 Nov 2016.

  14. 14.

    Han, L., & Wu, K. (2013). Joint wireless communication and radar sensing systems-state of the art and future prospects. IET Microwaves, Antennas and Propagation, 7, 876–885.

  15. 15.

    Han, Y., Ekici, E., Kremo, H., & Altintas, O. (2016). Optimal spectrum utilization in joint automotive radar and communication networks. In 2016 14th international symposium on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt), May 2016.

  16. 16.

    Choi, J., Gonzáalez-Prelcic, N., Daniels, R., Bhat, C. R., & Heath, R. W., Jr. (2016). Millimeter wave vehicular communication to support massive automotive sensing. IEEE Communications Magazine, http://arxiv.org/abs/1602.06456.

  17. 17.

    Avigilon Corporation. (2017). Avigilon presence detector (APD) sensor. http://4a54f0271b66873b1ef4-ddc094ae70b29d259d46aa8a44a90623.r7.cf2.rackcdn.com/assets/Uploads/en_US/AvigilonPDDatasheetRev1.pdf. Accessed 2 Feb 2018.

  18. 18.

    Ellinger, J., Zhang, Z., Wicks, M., & Wu, Z. (2016). Polar signal detection: Multi-carrier waveform design for improved radar detection performance. In: MILCOM 20162016 IEEE military communications conference (pp. 912–917) Baltimore, MD.

  19. 19.

    Jankiraman, M., Wessels, B. J., & van Genderen, P. (1998). Design of a Multifrequency FMCW Radar. In: Microwave conference, 1998. 28th European (pp. 584–589). Amsterdam: Netherlands.

  20. 20.

    Prasad, N., Shameem, V., Desai, U., & Merchant, S. (2004). Improvement in target detection performance of pulse coded doppler radar based on multicarrier modulation with Fast Fourier Transform (FFT). IEE Proceedings-Radar, Sonar and Navigation, 151(1), 11–17.

  21. 21.

    Mahmood, M., & Bell, M. (2012). Non-linear processing for multicarrier MIMO radar for improved target resolution. In: Signals, systems and computers (ASILOMAR), 2012 conference record of the forty sixth asilomar conference on, (pp. 1317–1322) Nov 2012.

  22. 22.

    Qin, G., Chen, B., & Chen, D. (2009). A new method for velocity estimation in multicarrier-frequency MIMO radar. In: Radar conference, 2009 IET international (pp. 1–4).

  23. 23.

    Sen, S., & Nehorai, A. (2011). Adaptive OFDM radar for target detection in multipath scenarios. IEEE Transactions on Signal Processing, 59(1), 78–90.

  24. 24.

    Sen, S., Tang, G., & Nehorai, A. (2011). Multiobjective optimization of OFDM radar waveform for target detection. IEEE Transactions on Signal Processing, 59(2), 639–652.

  25. 25.

    Sen, S., & Nehorai, A. (2009). Target detection in clutter using adaptive OFDM radar. IEEE Signal Processing Letters, 16(7), 592–595.

  26. 26.

    Garmatyuk, D., Schuerger, J., Morton, Y., Binns, K., Durbin, M., & Kimani, J. (2007). Feasibility study of a multi-carrier dual-use imaging radar and communication system. In: Proceedings of the IEEE international radar conference (pp. 194–197).

  27. 27.

    Garmatyuk, D., & Schuerger, J. (2008). Conceptual design of a dual-use radar/communication system based on OFDM. In: Proceedings of the IEEE military communications conference (MILCOM) (pp. 1–7).

  28. 28.

    Garmatyuk, D., Schuerger, J., Kauffman, K., & Spalding, S. (2009). Wideband OFDM system for radar and communications. In: Proceedings of the IEEE international radar conference (pp. 1–6).

  29. 29.

    Garmatyuk, D., & Kauffman, K. (2009). Radar and data communication fusion with UWB-OFDM software-defined system. In: Proceedings of the IEEE international conference on ultra-wideband (ICUWB) (pp. 454–458).

  30. 30.

    Garmatyuk, D., Schuerger, J., & Kauffman, K. (2011). Multifunctional software-defined radar sensor and data communication system. IEEE Sensors Journal, 11(1), 99–106.

  31. 31.

    Sturm, C., & Wiesbeck, W. (2011). Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proceedings of the IEEE, 99(7), 1236–1259.

  32. 32.

    Hassanien, A., & Vorobyov, S. (2009). Transmit/receive beamforming for MIMO radar with colocated antennas. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2089–2092).

  33. 33.

    Friedlander, B. (2009). On the relationship between MIMO and SIMO radars. IEEE Transactions on Signal Processing, 57(1), 394–398.

  34. 34.

    Li, J., & Stoica, P. (2008). MIMO radar signal processing. Hoboken: Wiley.

  35. 35.

    Reichardt, L., Pontes, J., Sit, Y., & Zwick, T. (April 2011). Antenna optimization for time-variant MIMO systems. In: Proceedings of the IEEE 5th European conference on antennas and propagation (EUCAP) (pp. 2569–2573).

  36. 36.

    Sturm, C., Sit, Y., Braun, M., & Zwick, T. (2013). Spectrally interleaved multi-carrier signals for radar network applications and multi-input multioutput radar. IET Radar, Sonar and Navigation, 7(3), 261–269.

  37. 37.

    Magueta, R. L., Castanheira, D., Silva, A., Dinis, R., & Gameiro, A. (2017). Hybrid iterative space–time equalization for multi-user mmW massive MIMO systems. IEEE Transactions on Communications, 65(2), 608–620.

  38. 38.

    Larson, E., Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.

  39. 39.

    Boccardi, F., Heath, R. W., Jr., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.

  40. 40.

    Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.

  41. 41.

    Rusek, F., Persson, D., Lau, B., Larsson, E., Marzetta, T., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

  42. 42.

    Swindlehurts, A., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave massive MIMO: The next wireless revolution? IEEE Communications Magazine, 52(9), 52–62.

  43. 43.

    Roh, W., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G Cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.

  44. 44.

    Rappaport, T., et al. (2014). Millimeter wave wireless communications. Upper Saddle River: Prentice Hall.

  45. 45.

    Rappaport, T. S., MacCartney, G., Jr., Samimi, M., & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications, 63(9), 3029–3056.

  46. 46.

    Alkhateeb, A., Mo, J., Gonzáles-Prelcic, N., & Heath, R. W., Jr. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine, 52(12), 122–131.

  47. 47.

    Levanon, N. (2000). Multifrequency complementary phase-coded radar signal. IEE Proceedings-Radar, Sonar and Navigation, 147, 276–284.

  48. 48.

    Donnet, B. J., & Longstaff, I. D. (2006). Combining MIMO radar with OFDM communications. In: 2006 European radar conference (pp. 37–40).

  49. 49.

    Lellouch, G., & Nikookar, H. (2007). On the capability of a radar network to support communications. In: 2007 14th IEEE symposium on communications and vehicular technology in the Benelux (pp. 1–5).

  50. 50.

    Garmatyuk, D., Schuerger, J., Morton, Y.T., Binns, K., Durbin, M., & Kimani, J. (2007). Feasibility study of a multi-carrier dual-use imaging radar and communication system. In: 2007 European radar conference (pp. 194–197).

  51. 51.

    Sturm, C., Zwick, T., & Wiesbeck, W. (2009). An OFDM system concept for joint radar and communications operations. In: VTC spring 2009IEEE 69th vehicular technology conference (pp. 1–5).

  52. 52.

    Dida, M. A., Hao, H., Wang, X., & Ran, T. (2016). Constant envelope chirped OFDM for power-efficient radar communication. In: 2016 IEEE information technology, networking, electronic and automation control conference (pp. 298–301).

  53. 53.

    Koslowski, S., Braun, M., & Jondral, F. K. (2014). Using filter bank multicarrier signals for radar imaging. In: 2014 IEEE/ION position, location and navigation symposiumPLANS 2014 (pp. 152–157).

  54. 54.

    Fink, J., Braun, M., & Jondral, F. K. (2012). Effects of arbitrarily spaced subcarriers on detection performance in OFDM radar. In: 2012 IEEE vehicular technology conference (VTC Fall) (pp. 1–5).

  55. 55.

    Nuss, B., Sit, L., & Zwick, T. (2017). A novel technique for interference mitigation in OFDM radar using compressed sensing. In: 2017 IEEE MTT-S international conference on microwaves for intelligent mobility (ICMIM) (pp. 143–146).

  56. 56.

    Cheng, S.-J., Wang, W.-Q., & Shao, H.-Z. (2015). Spread spectrum-coded OFDM chirp waveform diversity design. IEEE Sensors Journal, 15(10), 5694–5700.

  57. 57.

    Shan, T. J., & Kailath, T. (1985). Adaptive beamforming for coherent signals and interference. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP, 33, 527–536.

  58. 58.

    Zheng, L., & Wang, X. (2017). Super-resolution delay-doppler estimation for OFDM passive radar. IEEE Transactions on Signal Processing, 65, 2197–2210.

  59. 59.

    Sturm, C., & Wiesbeck, W. (2011). Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proceedings of the IEEE, 99, 1236–1259.

  60. 60.

    Contu, M., & Lombardo, P. (2013). Sidelobe control for a MIMO radar virtual array. In: 2013 IEEE radar conference (RadarCon13) (pp. 1–6).

  61. 61.

    Sit, Y. L., Sturm, C., Baier, J., & Zwick, T. (2012). Direction of arrival estimation using the MUSIC algorithm for a MIMO OFDM radar. In: 2012 IEEE radar conference (pp. 226–229).

  62. 62.

    Sit, Y. L., Nguyen, T. T., & Zwick, T. (2013). 3D radar imaging with a MIMO OFDM-based radar. In: 2013 Asia-Pacific microwave conference proceedings (APMC) (pp. 68–70).

  63. 63.

    Nuss, B., Sit, Y. L., & Zwick, T. (2016). 3D radar image fusion using OFDM-based MIMO radar. In: 2016 German microwave conference (GeMiC) (pp. 209–212).

  64. 64.

    Auer, G. (2012). 3D MIMO-OFDM channel estimation. IEEE Transactions on Communications, 60, 972–985.

  65. 65.

    Ketpan, W., & Sellathurai, M. (2016). Compressive sensing-based 3D signal extraction for MIMO passive radar using OFDM waveforms. In: 2016 IEEE international conference on communications (ICC). (pp. 1–6).

  66. 66.

    Sit, Y. L., & Zwick, T. (2014). Automotive MIMO OFDM radar: Subcarrier allocation techniques for multiple-user access and DOA estimation. In: 2014 11th European radar conference (pp. 153–156).

  67. 67.

    Yuan, D., Joung, J., Ho, C. K., & Sun, S. (2013). On tractability aspects of optimal resource allocation in OFDMA systems. IEEE Transactions on Vehicular Technology, 62(2), 863–873.

Download references


This work is partially funded by the European Structural and Investment Funds (FEEI) through the Competitiveness and Internationalization Operational Program—COMPETE 2020 and by National Funds through FCT—Foundation for Science and Technology under the Project RETIOT (POCI-01-0145- FEDER- 016432).

Author information

Correspondence to Paulo P. Monteiro.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gameiro, A., Castanheira, D., Sanson, J. et al. Research Challenges, Trends and Applications for Future Joint Radar Communications Systems. Wireless Pers Commun 100, 81–96 (2018). https://doi.org/10.1007/s11277-018-5614-8

Download citation


  • Joint radar communication (JRC)
  • Cyber-physical systems (CPS)
  • Internet of things (IoT)
  • Wireless sensor networks (WSNs)
  • OFDM
  • MIMO
  • mMIMO