Advertisement

Wireless Personal Communications

, Volume 100, Issue 3, pp 683–708 | Cite as

Optimal Node Clustering and Scheduling in Wireless Sensor Networks

  • Palvinder Singh Mann
  • Satvir Singh
Article
  • 97 Downloads

Abstract

Selection and rotation of cluster head (CH) is a well known optimization problem in hierarchical Wireless sensor networks (WSNs), which affects its overall network performance. Population-based metaheuristic particularly Artificial bee colony (ABC) has shown to be competitive over other metaheuristics for solving optimization problems in WSNs. However, its search equation contributes to its insufficiency due to poor exploitation phase and low convergence rate. This paper, presents an improved artificial bee colony (iABC) metaheuristic with an improved search equation, which will be able to search an optimal solution to improve its exploitation capabilities moreover, in order to increase the global convergence of the proposed metaheuristic, an improved approach for population sampling is introduced through Student’s-t distribution. The proposed metaheuristic maintain a balance between exploration and exploitation search abilities with least memory requirements, with the use of first of its kind compact Student’s-t distribution, which is particularly suitable for WSNs limited hardware environment. Further utilising the capabilities of the proposed metaheuristic, an improved artificial bee colony based clustering and scheduling (iABC-CS) scheme is introduced, to obtain optimal cluster heads (CHs) along with optimal CH scheduling in WSNs. Simulation results manifest that iABC-CS outperform over other well known clustering algorithms on the basis of packet delivery ratio, energy consumption, network lifetime and end to end delay.

Keywords

Wireless sensor networks Clustering and scheduling algorithm Improved artificial bee colony (iABC) metaheuristic 

Notes

Acknowledgements

The authors of the study acknowledge the contribution of I. K. Gujral Punjab Technical University, Kapurthala, Punjab, India.

References

  1. 1.
    Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRefGoogle Scholar
  2. 2.
    Al-Karaki, J. N., & Kamal, A. E. (2004). Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications, 11(6), 6–28.CrossRefGoogle Scholar
  3. 3.
    Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad hoc Networks, 3(3), 325–349.CrossRefGoogle Scholar
  4. 4.
    Gaura, E. (2010). Wireless sensor networks: Deployments and design frameworks. Berlin: Springer.CrossRefGoogle Scholar
  5. 5.
    Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, 30(14), 2826–2841.CrossRefGoogle Scholar
  6. 6.
    Tyagi, S., & Kumar, N. (2012). A systematic review on clustering and routing techniques based upon leach protocol for wireless sensor networks. Journal of Network and Computer Applications, 36, 623–645.CrossRefGoogle Scholar
  7. 7.
    Chamam, A., & Pierre, S. (2010). A distributed energy-efficient clustering protocol for wireless sensor networks. Computers & Electrical Engineering, 36(2), 303–312.CrossRefMATHGoogle Scholar
  8. 8.
    Kulkarni, R. V., Forster, A., & Venayagamoorthy, G. K. (2011). Computational intelligence in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 13(1), 68–96.CrossRefGoogle Scholar
  9. 9.
    Das, S., Abraham, A., & Konar, A. (2009). Metaheuristic clustering. In Studies in computational intelligence (1st ed., Vol. 178). Berlin: Springer.Google Scholar
  10. 10.
    Samrat, L., & Udgata, A. A. S. (2010). Artificial bee colony algorithm for small signal model parameter extraction of MESFET. Engineering Applications of Artificial Intelligence, 11, 1573–1592.Google Scholar
  11. 11.
    Karaboga, D., & Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 214(1), 108–132.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Heinzelman, W. B., Chandrakasan, A. P., Balakrishnan, H., et al. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRefGoogle Scholar
  13. 13.
    Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.CrossRefGoogle Scholar
  14. 14.
    Yi, S., Heo, J., Cho, Y., & Hong, J. (2007). PEACH: Power-efficient and adaptive clustering hierarchy protocol for wireless sensor networks. Computer Communications, 30(14), 2842–2852.CrossRefGoogle Scholar
  15. 15.
    Selvakennedy, S., Sinnappan, S., & Shang, Y. (2007). A biologically-inspired clustering protocol for wireless sensor networks. Computer Communications, 30(14), 2786–2801.CrossRefGoogle Scholar
  16. 16.
    Jin, Y., Wang, L., Kim, Y., & Yang, X. (2008). EEMC: An energy-efficient multi-level clustering algorithm for large-scale wireless sensor networks. Computer Networks, 52(3), 542–562.CrossRefMATHGoogle Scholar
  17. 17.
    Kumar, D., Aseri, T. C., & Patel, R. (2009). EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Computer Communications, 32(4), 662–667.CrossRefGoogle Scholar
  18. 18.
    Yang, J., Xu, M., Zhao, W., & Xu, B. (2009). A multipath routing protocol based on clustering and ant colony optimization for wireless sensor networks. Sensors, 10(5), 4521–4540.CrossRefGoogle Scholar
  19. 19.
    Deng, S., Li, J., & Shen, L. (2011). Mobility-based clustering protocol for wireless sensor networks with mobile nodes. IET Wireless Sensor Systems, 1(1), 39–47.CrossRefGoogle Scholar
  20. 20.
    Song, M. A. O., & Zhao, C. (2011). Unequal clustering algorithm for WSN based on fuzzy logic and improved ACO. The Journal of China Universities of Posts and Telecommunications, 18(6), 89–97.CrossRefGoogle Scholar
  21. 21.
    Liu, Z., Zheng, Q., Xue, L., & Guan, X. (2012). A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Future Generation Computer Systems, 28(5), 780–790.CrossRefGoogle Scholar
  22. 22.
    Attea, B. A., & Khalil, E. A. (2012). A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Applied Soft Computing, 12, 1950–1957.CrossRefGoogle Scholar
  23. 23.
    Hoang, D., Yadav, P., Kumar, R., & Panda, S. (2014). Real-time implementation of a harmony search algorithm-based clustering protocol for energy efficient wireless sensor networks. IEEE Transactions on Industrial Informatics, 10, 774–783.CrossRefGoogle Scholar
  24. 24.
    Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.CrossRefGoogle Scholar
  25. 25.
    Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687–697.CrossRefGoogle Scholar
  26. 26.
    Zhang, R., & Wu, C. (2011). An artificial bee colony algorithm for the job shop scheduling problem with random processing times. Entropy, 13(9), 1708–1729.CrossRefMATHGoogle Scholar
  27. 27.
    Gao, W., & L, S. (2011). Improved artificial bee colony algorithm for global optimization. Information Processing Letters, 111(17), 871–882.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Neri, F., Iacca, G., & Mininno, E. (2013). Compact Optimization. In I. Zelinka, V. Snášel, & A. Abraham (Eds.), Handbook of Optimization. Intelligent Systems Reference Library (Vol. 38). Berlin: SpringerGoogle Scholar
  29. 29.
    Gao, W., Liu, S., & Huang, L. (2012). A global best artificial bee colony algorithm for global optimization. Journal of Computational and Applied Mathematics, 236(11), 2741–2753.MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Abro, A. G., & Mohamad-Saleh, J. (2012). Enhanced global-best artificial bee colony optimization algorithm. In Sixth UKSim-AMSS European symposium on computer modeling and simulation (pp. 95–100).Google Scholar
  31. 31.
    Gao, W., Liu, S. Y., & Huang, L. L. (2013). A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Transactions on Cybernetics, 43(3), 1011–1024.CrossRefGoogle Scholar
  32. 32.
    Li, G., Niu, P., & Xiao, X. (2013). Development and investigation of efficient artificial bee colony algorithm for numerical function optimization. Applied Soft Computing, 12(1), 320–332.CrossRefGoogle Scholar
  33. 33.
    Guo, P., Cheng, W., & Liang, J. (2011). Global artificial bee colony search algorithm for numerical function optimization. Seventh International Conference on Natural Computation, 3, 1280–1283.CrossRefGoogle Scholar
  34. 34.
    Akay, B., & Karaboga, D. (2012). A modified artificial bee colony algorithm for real-parameter optimization. Information Science, 192, 120–142.CrossRefGoogle Scholar
  35. 35.
    Mininno, E., Cupertino, F., & Naso, D. (2008). Real-valued compact genetic algorithms for embedded microcontroller optimization. IEEE Transactions on Evolutionary Computation, 12(2), 203–219.CrossRefGoogle Scholar
  36. 36.
    Larranaga, P., & Lozano, J. A. (2001). Estimation of distribution algorithms: A new tool for evolutionary computation. Alphen aan den Rijn: Kluwer.MATHGoogle Scholar
  37. 37.
    Walck, C. (2007). Statistical Distributions for experimentalists. Particle Physics Group.Google Scholar
  38. 38.
    Storn, R., & Price, K. (2010). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 23, 689–694.MATHGoogle Scholar
  39. 39.
    Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15, 4–31.CrossRefGoogle Scholar
  40. 40.
    Gonuguntla, V., Mallipeddi. R., & Veluvolu, K. C. (2015). Differential evolution with population and strategy parameter adaptation. Mathematical Problems in Engineering.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DAV Institute of Engineering and TechnologyJalandharIndia
  2. 2.I. K. Gujral Punjab Technical UniversityKapurthalaIndia

Personalised recommendations