Wireless Personal Communications

, Volume 103, Issue 2, pp 1179–1194 | Cite as

HIoTPOT: Surveillance on IoT Devices against Recent Threats

  • Usha Devi Gandhi
  • Priyan Malarvizhi Kumar
  • R. VaratharajanEmail author
  • Gunasekaran Manogaran
  • Revathi Sundarasekar
  • Shreyas Kadu


Honeypot Internet of Things (IoT) (HIoTPOT) keep a secret eye on IoT devices and analyzes the various recent threats which are dangerous to IoT devices. In this paper, implementation of a research honeypot is presented which is used to learn the recent tactics and ethics used by black hat community to attack on IoT devices. As IoT is open and easy for accessing, all the intruders are highly attracted towards IoT. Recently Telnet based attacks are very famous on IoT devices to get easy access and attack on other devices. To reduce these kinds of threats, it is necessary to know in details about intruder, therefore the aim of this research work is to implement novel based secret eye server known as HIoTPOT which will make the IoT environment more safe and secure.


Honeypot IoT Intruder Raspberry Pi Raspbian Black hat community White hat community HIoTPOT Intrusion detection system Research honeypot Production honeypot 


  1. 1.
    Manogaran, G., Lopez, D., Thota, C., Abbas, K. M., Pyne, S., & Sundarasekar, R. (2017). Big data analytics in healthcare internet of things. In Innovative healthcare systems for the 21st century (pp. 263-284). Springer International Publishing.Google Scholar
  2. 2.
    Lopez, D., & Manogaran, G. (2016). Data architecture for climate change and disease dynamics. In R. S. Tomar et al. (Eds.), The human element of big data: issues, analytics, and performance. Baca Raton: CRC Press.Google Scholar
  3. 3.
    Manogaran, G., & Lopez, D. (2017). Disease surveillance system for big climate data processing and dengue transmission. International Journal of Ambient Computing and Intelligence, 8(2), 1–25.CrossRefGoogle Scholar
  4. 4.
    Manogaran, G., & Lopez, D. (2017). Spatial cumulative sum algorithm with big data analytics for climate change detection. Computers & Electrical Engineering.Google Scholar
  5. 5.
    Manogaran, G., & Lopez, D. (2017). A Gaussian process based big data processing framework in cluster computing environment. Cluster Computing, 1–16.Google Scholar
  6. 6.
    Lopez, D., Manogaran, G., & Jagan, J. (2017). Modelling the H1N1 influenza using mathematical and neural network approaches. Biomedical Research, 28(8), 1–5.Google Scholar
  7. 7.
    Lopez, D., Gunasekaran, M., Murugan, B. S., Kaur, H., and Abbas, K. M. (2014, October). “Spatial BigData analytics of influenza epidemic in Vellore, India, In Proceedings 2014 IEEE International Conference onBig Data (pp. 19–24). IEEE.Google Scholar
  8. 8.
    Lopez, D. & Gunasekaran, M. (2015). Assessment of Vaccination Strategies Using Fuzzy MulticriteriaDecision Making. In Proceedings proceedings of the fifth international conference on fuzzy and neurocomputing (FANCCO-2015) (pp. 195–208). Springer International.Google Scholar
  9. 9.
    Mukherjee, B., Heberlein, L. T., & Levitt, K. N. (1994). Network intrusion detection. IEEE Network, 8(3), 26–41.CrossRefGoogle Scholar
  10. 10.
    Zhao, M., Grossklags, J., & Chen, K. (2014) An exploratory study of white hat behaviors in a web vulnerability disclosure program. In Proceedings of the 2014 ACM workshop on security information workers (pp. 51–58).Google Scholar
  11. 11.
    Lopez, D., & Sekaran, G. (2016). Climate change and disease dynamics—a big data perspective. International Journal of Infectious Diseases, 45, 23–24.CrossRefGoogle Scholar
  12. 12.
    Manogaran, G., Vijayakumar, V., Varatharajan, R., Kumar, P. M., Sundarasekar, R., & Hsu, C. H. Machine learning based big data processing framework for cancer diagnosis using hidden markov model and gm clustering. Wireless Personal Communications, 1–18.Google Scholar
  13. 13.
    Varatharajan, R., Manogaran, G., & Priyan, M. K. (2017). A big data classification approach using LDA with an enhanced SVM method for ECG signals in cloud computing. Multimedia Tools and Applications, 1–21.Google Scholar
  14. 14.
    McGrew, R. (2006) Experiences with honeypot systems: Development, deployment, and analysis. In HICSS’06. Proceedings of the 39th annual Hawaii international conference on system sciences (Vol. 9, p. 220a).Google Scholar
  15. 15.
    Reddy, M. P., Reddy, K. S., Reddy, M. I. S., & Sreenivasulu, G. Host based information gathering honeypots for network security. In Editor. Board, p. 369.Google Scholar
  16. 16.
    Thota, C., Sundarasekar, R., Manogaran, G., Varatharajan, R., & Priyan, M. K. (2018). Centralized fog computing security platform for IoT and cloud in healthcare system. In Exploring the Convergence of Big Data and the Internet of Things (pp. 141–154). IGI Global.Google Scholar
  17. 17.
    Manogaran, G., & Lopez, D. (2016). Health data analytics using scalable logistic regression with stochastic gradient descent. International Journal of Advanced Intelligence Paradigms, 9, 1–15.Google Scholar
  18. 18.
    Byun, J.-Y., Nasridinov, A., & Park, Y.-H. (2014). Internet of things for smart crime detection. Contemporary Engineering Sciences, 7(15), 749–754.CrossRefGoogle Scholar
  19. 19.
    Manogaran, G., Thota, C., Lopez, D., Vijayakumar, V., Abbas, K. M., & Sundarsekar, R. (2017). Big data knowledge system in healthcare. In: Internet of things and big data technologies for next generation healthcare (pp. 133–157). Springer International Publishing.Google Scholar
  20. 20.
    Manogaran, G., & Lopez, D. (2017). Disease surveillance system for big climate data processing and dengue transmission. International Journal of Ambient Computing and Intelligence (IJACI), 8(2), 88–105.CrossRefGoogle Scholar
  21. 21.
    Li, L., Sun H., & Zhang, Z. (2011) the research and design of honeypot system applied in the lan security. In 2011 IEEE 2nd international conference on software engineering and service science (ICSESS 2011) (pp. 360–363).Google Scholar
  22. 22.
    Manogaran, G., Lopez, D., Thota, C., Abbas, K. M., Pyne, S., & Sundarasekar, R. (2017). Big data analytics in healthcare Internet of Things. In Innovative healthcare systems for the 21st century (pp. 263–284). Springer International Publishing.Google Scholar
  23. 23.
    Manogaran, G., & Lopez, D. (2017). A survey of big data architectures and machine learning algorithms in healthcare. International Journal of Biomedical Engineering and Technology, 25(2–4), 182–211.CrossRefGoogle Scholar
  24. 24.
    Suo, X., Han, X. & Gao, Y. (2014) Research on the application of honeypot technology in intrusion detection system. In 2014 IEEE workshop on advanced research and technology in industry applications (WARTIA) 2014 (pp. 1030–1032).Google Scholar
  25. 25.
    Manogaran, G., Thota, C., & Lopez, D. (2018). Human-computer interaction with big data analytics. In HCI Challenges and privacy preservation in big data security (pp. 1–22). IGI Global.Google Scholar
  26. 26.
    Kumar, P. M., Gandhi, U., Varatharajan, R., Manogaran, G., Jidhesh, R., & Vadivel, T. (2017). Intelligent face recognition and navigation system using neural learning for smart security in internet of things. Cluster Computing, 1–12.Google Scholar
  27. 27.
    Lopez, D., & Manogaran, G. (2017). Parametric model to predict H1N1 influenza in Vellore District, Tamil Nadu, India. In S. Pyne et al. (Eds.), Handbook of Statistics (Vol. 37, pp. 301–316). Elsevier.Google Scholar
  28. 28.
    Manogaran, G., Varatharajan, R., & Priyan, M. K. (2017). Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system. Multimedia Tools and Applications, 1–21.Google Scholar
  29. 29.
    Varatharajan, R., Manogaran, G., Priyan, M. K., Balaş, V. E., & Barna, C. (2017). Visual analysis of geospatial habitat suitability model based on inverse distance weighting with paired comparison analysis. Multimedia Tools and Applications, 1–21.Google Scholar
  30. 30.
    Varatharajan, R., Vasanth, K., Gunasekaran, M., Priyan, M., & Gao, X. Z. (2017). An adaptive decision based kriging interpolation algorithm for the removal of high density salt and pepper noise in images. Computers & Electrical Engineering (In Press).Google Scholar
  31. 31.
    Varatharajan, R., Manogaran, G., Priyan, M. K., & Sundarasekar, R. (2017). Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Cluster Computing, 1–10. (In Press)Google Scholar
  32. 32.
    Varatharajan, R., Manogaran, G., & Priyan, M. K. (2017). A big data classification approach using LDA with an enhanced SVM method for ECG signals in cloud computing. Multimedia Tools and Applications, 1–21.Google Scholar
  33. 33.
    Pomsathit, A. (2012) Effective of unicast and multicast IP address attack over intrusion detection system with honeypot. In 2012 spring congress on engineering and technology (S-CET) 2012 (pp. 1–4).Google Scholar
  34. 34.
    Manogaran, G., Varatharajan, R., Lopez, D., Kumar, P. M., Sundarasekar, R., & Thota, C. (2017). A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting. Future Generation Computer Systems.Google Scholar
  35. 35.
    Thota, C., Sundarasekar, R., Manogaran, G., Varatharajan, R., & Priyan, M. K. (2018). Centralized Fog Computing Security Platform for IoT and Cloud in Healthcare System. In Exploring the Convergence of Big Data and the Internet of Things (pp. 141–154). IGI Global.Google Scholar
  36. 36.
    Suresh, A., & Varatharajan, R. (2017). Competent resource provisioning and distribution techniques for cloud computing environment. Cluster Computing, 1–8. (In Press)Google Scholar
  37. 37.
    Priyan, M. K., & Devi, G. U. (2017). Energy efficient node selection algorithm based on node performance index and random waypoint mobility model in internet of vehicles. Cluster Computing, 1–15. (In Press)Google Scholar
  38. 38.
    Xiaoyong, L., & Dongxi, L. (2005). An automatic scheme to construct Snort rules from honeypots data. Journal of Systems Engineering and Electronics, 16(2), 466–470.Google Scholar
  39. 39.
    Kumar, P. M., & Gandhi, U. D. (2017). A novel three-tier Internet of Things architecture with machine learning algorithm for early detection of heart diseases. Computers & Electrical Engineering.Google Scholar
  40. 40.
    Kumar, P. M., & Gandhi, U. D. (2017). Enhanced DTLS with CoAP-based authentication scheme for the internet of things in healthcare application. The Journal of Supercomputing, 1–21.Google Scholar
  41. 41.
    da Silva Vargas, I. R. J., & Kleinschmidt, J. H. (2015). Capture and analysis of malicious traffic in VoIP environments using a low interaction honeypot. IEEE Latin America Transactions, 13(3), 777–783.CrossRefGoogle Scholar
  42. 42.
    Beham, M.,Vlad, M. & Reiser, H. P. (2013) Intrusion detection and honeypots in nested virtualization environments. In 2013 43rd Annual IEEE/IFIP international conference on dependable systems and networks (DSN) 2013 (pp. 1–6).Google Scholar
  43. 43.
    La, Q. D., Quek, T., Lee, J., Jin, S., & Zhu, H. (2016). Deceptive attack and defense game in honeypot-enabled networks for the internet of things. IEEE Internet Things Journal, 3, 1025.CrossRefGoogle Scholar
  44. 44.
    Levine, J. G., Grizzard, J. B., & Owen, H. L. (2004). Using honeynets to protect large enterprise networks. IEEE Security and Privacy, 2(6), 73–75.CrossRefGoogle Scholar
  45. 45.
    Selvaraj, R., Kuthadi, V. M., & Marwala, T. (2016). Ant-based distributed denial of service detection technique using roaming virtual honeypots. IET Communications, 10(8), 929–935.CrossRefGoogle Scholar
  46. 46.
    Dongxia, L. & Yongbo, Z. (2012) An intrusion detection system based on honeypot technology. In 2012 International conference on computer science and electronics engineering (ICCSEE) 2012 (Vol. 1, pp. 451–454).Google Scholar
  47. 47.
    McCarty, B. (2003). Botnets: Big and bigger. IEEE Security and Privacy, 99(4), 87–90.CrossRefGoogle Scholar
  48. 48.
    Raynal, F., Berthier, Y., Biondi, P., & Kaminsky, D. (2004). Honeypot forensics part 1: Analyzing the network. IEEE Security and Privacy, 2(4), 72–78.CrossRefGoogle Scholar
  49. 49.
    Bringer, M. L., Chelmecki, C. A., & Fujinoki, H. (2012). A survey: Recent advances and future trends in honeypot research. International Journal of Computer Network and Information Security, 4(10), 63.CrossRefGoogle Scholar
  50. 50.
    Liu, C., Yang, J., Zhang, Y., Chen, R., & Zeng, J. (2011) Research on immunity-based intrusion detection technology for the internet of things. In 2011 Seventh international conference on natural computation (ICNC) 2011 (Vol. 1, pp. 212–216).Google Scholar
  51. 51.
    Sforzin, A., Conti, M., Mármol, F. G. & Bohli, J.-M. RPiDS: Raspberry Pi IDS a fruitful intrusion detection system for IoT. (In Press)Google Scholar
  52. 52.
    Gendreau,A. A. & Moorman, M. (2016) Survey of intrusion detection systems towards an end to end secure internet of things. In 2016 IEEE 4th international conference on future internet of things and cloud (FiCloud) 2016 (pp. 84–90).Google Scholar
  53. 53.
    Bhatia, J. S., Sehgal, R., Bhushan, B. & Kaur, H. (2008) Multi layer cyber attack detection through honeynet. In 2008. NTMS’08 new technologies, mobility and security 2008 (pp. 1–5).Google Scholar
  54. 54.
    Kuwatly, I., Sraj, M., Al Masri, Z. & Artail, H. (2004) A dynamic honeypot design for intrusion detection. In ICPS 2004. IEEE/ACS international conference on pervasive services, 2004 (pp. 95–104). (In Press)Google Scholar
  55. 55.
    Li, X.-Q., Ding, X., Zhang, Y., Sun, Z.-P., & Zhao, H.-W. (2016). IoT family robot based on raspberry Pi, In International conerece on information system and artificial intelligence (ISAI), 2016 (pp. 622–625). (In Press)Google Scholar
  56. 56.
    Beheshti, M., Han, J., Kowalski, K., Ortiz, J., Tomelden, J., & Alvillar, D. (2008) Packet information collection and transformation for network intrusion detection and prevention. In International symposium on telecomunications, 2008. IST 2008 2008 (pp. 42–48).Google Scholar
  57. 57.
    Oriwoh, E., Jazani, D., Epiphaniou, G. & Sant, P. (2013) Internet of things forensics: Challenges and approaches. In 2013 9th international conference conference on collaborative computing: Networking, applications and worksharing (Collaboratecom), 2013 (pp. 608–615). (In Press)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Usha Devi Gandhi
    • 1
  • Priyan Malarvizhi Kumar
    • 1
  • R. Varatharajan
    • 2
    Email author
  • Gunasekaran Manogaran
    • 3
  • Revathi Sundarasekar
    • 4
  • Shreyas Kadu
    • 1
  1. 1.VIT UniversityVelloreIndia
  2. 2.Sri Ramanujar Engineering CollegeChennaiIndia
  3. 3.University of CaliforniaDavisUSA
  4. 4.Anna UniversityChennaiIndia

Personalised recommendations