Wireless Personal Communications

, Volume 98, Issue 1, pp 759–778 | Cite as

Polarization Planning for Wireless Networks

  • Philippe EzranEmail author
  • Yoram Haddad
  • Mérouane Debbah


Polarization diversity enables frequency reuse in a telecommunication network. The most widely considered solution is to use two orthogonal polarizations on the same link, which enables to double the available bandwidth. In this paper, we study the possibility to connect the nodes of a ring topology network with one single channel for all the links, with the condition that the polarization of any link is orthogonal to the polarization of the two adjacent links. The solution proposed in this paper can improve spectrum efficiency by up to 50% in comparison with the widespread polarization multiplexing solution. Furthermore, it has implications on network topology and channel allocation.


Polarization Frequency reuse Ring networks 



This research was funded by the Office of the Chief Scientist of the Israel Ministry of Economy under the Neptune generic research project. Neptune is the Israeli consortium for network programming.


  1. 1.
    Bojic, D., et al. (2013). Advanced wireless and optical technologies for small-cell mobile backhaul with dynamic software-defined management. IEEE Communications Magazine, 51(9), 86–93.CrossRefGoogle Scholar
  2. 2.
    Brady, J., Behdad, N., & Sayeed, A. M. (2013). Beamspace mimo for millimeter-wave communications: System architecture, modeling, analysis, and measurements. IEEE Transactions on Antennas and Propagation, 61(7), 3814–3827.CrossRefGoogle Scholar
  3. 3.
    Collins, B. S. (2000). Polarization diversity antennas for compact base stations. Microwave Journal, 43(1), 76–88.Google Scholar
  4. 4.
    Ezran, P., Haddad, Y., & Debbah, M. (2016). Polarization diversity in ring topology networks. In 2016 IEEE 84th vehicular technology conference.Google Scholar
  5. 5.
    Fuchs, B., & Fuchs, J. J. (2011). Optimal polarization synthesis of arbitrary arrays with focused power pattern. IEEE Transactions on Antennas and Propagation, 59(12), 4512–4519.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hansryd, J., & Edstam, J. (2011). Microwave capacity evolution. Ericsson Review, 1, 22–27.Google Scholar
  7. 7.
    Hoydis, J., Hosseini, K., ten Brink, S., & Debbah, M. (2013). Making smart use of excess antennas: Massive MIMO, small cells, and TDD. Bell Labs Technical Journal, 18(2), 5–21.CrossRefGoogle Scholar
  8. 8.
    Karabey, O. H., Bildik, S., Bausch, S., Strunck, S., Gaebler, A., & Jakoby, R. (2013). Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines. IEEE Transactions on Antennas and Propagation, 61(1), 70–76.CrossRefGoogle Scholar
  9. 9.
    Kwon, S. C., & Molisch, A. F. (2015) Capacity maximization with polarization-agile antennas in the mimo communication system. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–6). IEEE.Google Scholar
  10. 10.
    Kwon, S. C., & Stüber, G. L. (2014). Polarization division multiple access on NLoS wide-band wireless fading channels. IEEE Transactions on Wireless Communications, 13(7), 3726–3737.CrossRefGoogle Scholar
  11. 11.
    Lehpamer, H. (2010). Microwave transmission networks. New York City: New York City.Google Scholar
  12. 12.
    Lempiăinen, J. J., & Laiho-Steffens, J. K. (1998). The performance of polarization diversity schemes at a base station in small/micro cells at 1800 MHz. IEEE Transactions on Vehicular Technology, 47(3), 1087–1092.CrossRefGoogle Scholar
  13. 13.
    Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive mimo: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.CrossRefGoogle Scholar
  14. 14.
    Molisch, A. F. (2010). Wireless communications. Hoboken: Wiley.Google Scholar
  15. 15.
    Qualcomm. (2013). The 1000x mobile data challenge.
  16. 16.
    Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up mimo: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRefGoogle Scholar
  17. 17.
    Sayeed, A., & Brady, J. (2013). Beamspace mimo for high-dimensional multiuser communication at millimeter-wave frequencies. In 2013 IEEE global communications conference (GLOBECOM) (pp. 3679–3684). IEEE.Google Scholar
  18. 18.
    Sayeed, A. M., & Behdad, N. (2011). Continuous aperture phased mimo: A new architecture for optimum line-of-sight links. In 2011 IEEE international symposium on antennas and propagation (APSURSI) (pp. 293–296). IEEE.Google Scholar
  19. 19.
    Swindlehurst, A. L., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave massive mimo: The next wireless revolution? IEEE Communications Magazine, 52(9), 56–62.CrossRefGoogle Scholar
  20. 20.
    Turkmani, A., Arowojolu, A., Jefford, P., & Kellett, C. (1995). An experimental evaluation of the performance of two-branch space and polarization diversity schemes at 1800 MHz. IEEE Transactions on Vehicular Technology, 44(2), 318–326.CrossRefGoogle Scholar
  21. 21.
    Xiao, J. J., & Nehorai, A. (2009). Optimal polarized beampattern synthesis using a vector antenna array. IEEE Transactions on Signal Processing, 57(2), 576–587.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhang, Q., Jin, S., Wong, K. K., Zhu, H., & Matthaiou, M. (2014). Power scaling of uplink massive mimo systems with arbitrary-rank channel means. IEEE Journal of Selected Topics in Signal Processing, 8(5), 966–981.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Jerusalem College of TechnologyJerusalemIsrael
  2. 2.CentraleSupélecGif-sur-YvetteFrance

Personalised recommendations