Redesigned Spatial Modulation for Spatially Correlated Fading Channels

  • G. D. Goutham Simha
  • Shriharsha Koila
  • N. Neha
  • M. A. N. S. Raghavendra
  • U. Sripati
Article

Abstract

In this paper, a new variant of Spatial Modulation (SM) Multiple-Input Multiple-Output (MIMO) transmission technique, designated as Redesigned Spatial Modulation (ReSM) has been proposed. In ReSM scheme, a dynamic mapping for antenna selection is adopted. This scheme employs both single antenna as well as double antenna combinations depending upon channel conditions to combat the effect of spatial correlation. When evaluated over spatially correlated channel conditions, for a fixed spectral efficiency and number of transmit antennas, ReSM exhibits performance improvement of at least 3 dB over all the conventional SM schemes including Trellis Coded Spatial Modulation (TCSM) scheme. Furthermore, a closed form expression for the upper bound on Pairwise Error Probability (PEP) for ReSM has been derived. This has been used to calculate the upper bound for the Average Bit Error Probability (ABEP) for spatially correlated channels. The results of Monte Carlo simulations are in good agreement with the predictions made by analytical results. The relative gains of all the comparison plots in the paper are specified at an ABER of 10−4.

Keywords

Spatially Correlated (SC) Redesigned SM (ReSM) Trellis Coded SM (TCSM) Spatial Multiplexing (SMX) Spectral Efficiency (ηUniversal Software Radio Peripheral (USRP) Maximal Receive Ratio Combining (MRRC) 

References

  1. 1.
    Mesleh, R. Y., Haas, H., Sinanovic, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.CrossRefGoogle Scholar
  2. 2.
    Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura, S., & Hanzo, L. (2014). Spatial modulation genelaralized for MIMO: Opportunities challenges and implementation. Proceedings of the IEEE, 102(1), 56–103.CrossRefGoogle Scholar
  3. 3.
    Younis, A. (2013). Spatial modulation: Theory to practice. (Ph.D thesis, The University of Edinburgh).Google Scholar
  4. 4.
    Luna-Rivera, J. M & Gonzalez-Perez, M. G. (2012). An improved spatial modulation scheme for MIMO channels. EuCAP.Google Scholar
  5. 5.
    Luna-Rivera, J. M., Campos-Delgado, D. U., Gonzalez-Perez, M. G. (2013). Constellation design for spatial modulation. In The 2013 iberoamerican conference on electronics engineering and computer science, Elsevier.Google Scholar
  6. 6.
    Cheng, C. C., Sari, H., Sezginert, S., Su, Y. T. (2014). Enhanced spatial modulation with multiple constellations. In IEEE international black sea conference on communications and networking (BlackSeaCom).Google Scholar
  7. 7.
    Cheng, C. C., Sari, H., Sezginer, S., & Su, Y. T. (2015). Enhanced spatial modulation with multiple signal constellations. IEEE Transactions on Communications, 63(6), 2237–2248.CrossRefGoogle Scholar
  8. 8.
    Mesleh, R., Ikki, S. S., & Aggoune, H. M. (2014). Quadrature Spatial Modulation. IEEE Transactions on Vehicular Technology, 64, 1. doi:10.1109/TVT.2014.2344036.Google Scholar
  9. 9.
    Mesleh, R., Di Renzo, M., Haas, H., & Grant, P. M. (2010). Trellis coded spatial modulation. IEEE Transactions on Wireless Communication, 9(7), 2349–2361.CrossRefGoogle Scholar
  10. 10.
    Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008). Spatial modulation: Optimal detection and performance analysis. IEEE Communications Letters, 12(8), 545–547.CrossRefGoogle Scholar
  11. 11.
    Mesleh, R. et.al. (2009) On the performance of trellis coded spatial modulation. ITG workshop on smart antennas, Berlin Germany.Google Scholar
  12. 12.
    Afana, A., Atawi, I., Ikki, S. & Mesleh, R. (2015) Energy efficient quadrature spatial modulation MIMO cognitive radio systems with imperfect channel estimation. In IEEE international conference on ubiquitous wireless broadband (ICUWB) (pp. 1–5).Google Scholar
  13. 13.
    Mesleh, R., Ikki, S. S., & Aggoune, H. M. (2015). Quadrature spatial modulation. IEEE Transactions on Vehicular Technology, 64(6), 2738–2742.CrossRefGoogle Scholar
  14. 14.
    Proakis, J. G. (2000). Digital communications (4th ed.). New York: McGraw–Hill.MATHGoogle Scholar
  15. 15.
    Mobile Broadband Evolution Towards 5G: 3GPP Rel-12 & Rel-13 and Beyond 2015.Google Scholar
  16. 16.
    Hedayat, A., Shah, H., & Nosratinia, A. (2005). Analysis of space-time coding incorrelated fading channels. IEEE Transactions on Wireless Communications, 4(6), 2882–2891.CrossRefGoogle Scholar
  17. 17.
    Forenza, A. Love, D., Heath, R. Jr. (2004). A low complexity algorithm to simulate the spatial covariance matrix for clustered MIMO channel models. In IEEE vehicular technology conference—VTC 2004-Fall, Los Angeles, CA, USA, May, 2004 (pp. 889–893).Google Scholar
  18. 18.
    MacLeod, H., Loadman, C., Chen, Z. (2005). Experimental studies of the 2.4-GHz ISM wireless indoor channel. In Proceedings of the 3rd annual communication networks and services research conference (CNSR’05). Google Scholar
  19. 19.
    Duman, T. M., & Ghrayeb, A. (2007). Coding for MIMO communication systems. Hoboken: Wiley.CrossRefMATHGoogle Scholar
  20. 20.
    Zelst and, A. V. & Hammerschmidt, J. S. (2002) A single coefficient spatial correlation model for multiple-input multiple-output (MIMO) radio channels. In 27th general assembly of the international union of radio science (URSI), Maastricht, The Netherlands, Aug. 17–24 2002 (pp. 1–4).Google Scholar
  21. 21.
    Mesleh, R. Y. (2007) Spatial Modulation: A spatial multiplexing technique for efficient wireless data transmission. (Ph.D Thesis, School of Engineering and Science Jacobs University).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electronics and CommunicationNational Institute of Technology Karnataka (NITK)SurathkalIndia

Personalised recommendations