Advertisement

Wireless Personal Communications

, Volume 97, Issue 3, pp 4651–4665 | Cite as

UPTP Vehicle Trajectory Prediction Based on User Preference Under Complexity Environment

  • Zhuoqun Xia
  • Zhenzhen HuEmail author
  • Junpeng Luo
Article
  • 188 Downloads

Abstract

Accurate and reliable vehicle trajectory prediction is a vital component of any intelligent transportation system, which can improve the traffic safety and facilitate effective urban road planning. Because vehicle trajectories are uncertain and are characterized by vulnerability to environmental and user behaviors, they are exceedingly difficult to accurate via modern trajectory prediction technology. This paper proposes a vehicle trajectory prediction method that integrates environmental awareness and user preferences. First,the disutility function value is applied to the logarithmic model to calculate the user path selection probability. Secondly, the SSEM algorithm is used to process the user preferences and obtain a user type distribution. Finally, the optimal variational Gaussian mixture model is used to represent the complex environment, and the obtained user-type distribution is used to implement on-line prediction. The results of a comprehensive evaluation experiment indicate that the proposed method is more accurate than other existing prediction methods.

Keywords

Environment awareness Users preference Disutility function Vehicle trajectory prediction 

Notes

Acknowledgements

The author would like to thank Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha University of Science and Technology, Changsha for support.The funding was given by the National Natural Science Foundation of China Grant (61572514), the Hunan Province Natural Science Foundation of China Grant (14JJ7043), the Hunan Province Transportation Department Technological Progress and Innovation Fund of China Grant (201405).

References

  1. 1.
    Yoon, H., & Shahabi, C. (2008). Rubst time-referenced segmentation of moving object trajectories. In Eighth IEEE International Conference on Data Miniing (pp. 1121–1126). doi: 10.1109/ICDM.2008.133.
  2. 2.
    Wang, Z.-C., Lu, M., & Yuan, X.-R. (2013). Visual traffic jam analysis based on trajectory data. IEEE Transaction on Visualization and Computer Graphics, 19(12), 2159–2168.CrossRefGoogle Scholar
  3. 3.
    Andrienko, G., & Andrienko, N. (2008). Spatio-temporal aggregation for visual analysis of movements. In Proceedings of IEEE VAST (Vol. 1, pp. 51–58).Google Scholar
  4. 4.
    Deb, S., Jia, C., & Fong, S. (2013). On-road direction trajectory prediction by junction-based pattern mining from GPS data. International Conference on Machine Intelligent and Research Advancement (pp. 253–257). doi: 10.1109/ICMIRA.2013.54.
  5. 5.
    Ying, J. J. C., Lee, W. C., Weng, T. C., & Tseng, V. S. (2011). Semantic trajectory mining for location prediction. ACM SIGSPATIAL GIS11 (pp. 34–43). November 1–4, 2011, Chicago, IL, USA. doi: 10.1145/2093973.2093980.
  6. 6.
    Mogelmose, A., Trivedi, M. M., & Moeslund, T. B. (2015). Trajectory analysis and prediction for improved pedestrian safety: Integrated framework and evaluations. In Intelligent Vehicles Symposium (IV) (pp. 330–335). June 28–July 1, 2015. COEX, Seoul, Korea. doi: 10.1109/IVS.2015.7225707.
  7. 7.
    Horvitz, E., & Krumm, J. (2012). Some help on the way: Opportunistic routing under uncertainty. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (pp. 371–380). September 5–8, 2012, Pittsburgh, USA. doi: 10.1145/2370216.2370273.
  8. 8.
    Qiao, S.-J., Han, N., William, Z., & Gutierrez, L. A. (2014). TraPlan: An effective three-in-one trajectory prediction model in transportation networks. IEEE Transaction on Intelligent Transportation Systems, 16(3), 1188–1198.CrossRefGoogle Scholar
  9. 9.
    Assam, R., & Thomas, S. (2013). Bodygaurds: A clairvoyant location prediction using frequent neighbors and Markov model. In IEEE 10th Internet Conference on Ubiquitous Intelligent Computing and 2013 10th Internet Conference on Autonomic Trust Computing (pp. 25–32). doi: 10.1109/UIC-ATC.2013.18.
  10. 10.
    Yu, R.-Y., Xia, X.-Y., & Li, J. (2015). Social-aware mobile user location prediction algorithm in participatory sensing system. Chinese Journal of Computers, 38(2), 374–385.MathSciNetGoogle Scholar
  11. 11.
    Chen, M., Yu, X.-H., & Liu, Y. (2015). Mining moving patterns for predicting next location. Science Information System, 54(C), 156–168.CrossRefGoogle Scholar
  12. 12.
    Qiao, S.-J., Shen, D.-Y., & Wang, X.-T. (2015). A self-adaptive parameter selection trajectory prediction approach via hidden Markov models. IEEE Transactions on Intelligent Transportation System, 16(1), 284–295.CrossRefGoogle Scholar
  13. 13.
    Malekian, R., Kavish, A.-F., Maharaj, B. T., Gupta, P. K., Singh, G., & Waschefort, H. (2016). Smart vehicle navigation system using hidden Markov model and RFID technology. Wireless Personal Communication, 90, 1717–1742.CrossRefGoogle Scholar
  14. 14.
    Wiest, J., Hoffken, M., Krebel, U., & Dietmayer, K. (2012). Probabilistic trajectory prediction with Gaussian mixture models. In 2012 Intelligent Vehicle Symposium Alcal de Henares, Spain (pp. 141–146). June 3–7. doi: 10.1109/IVS.2012.6232277
  15. 15.
    Fu, X. X., Jiang, Y. H., & Lu, G. (2014). Probabilistic trajectory prediction in intelligent driving. In IFAC Proceeding of the 19th World Congress the International Federation of Automatic Control, Cape Town, South Africa (Vol. 47, pp. 24–29).Google Scholar
  16. 16.
    Chan, A., & Li, F. W. B. (2013). Utilizing massive spatioteporal samples for efficient and accurate trajectory prediction. IEEE Transactions on Mobile Computing, 12(12), 2346–2359.CrossRefGoogle Scholar
  17. 17.
    Chen, T.-S., Tsai, H.-W., & Peng, J.-J. (2016). Predcition-based object tracking in visual sensor networks. Wireless Personal Communication, 87, 145–163.CrossRefGoogle Scholar
  18. 18.
    Qiao, S.-J., Wang, X., & Tang, L. (2011). Key techniques for predicting the uncertain trajectories of moving objects with dynamic environment awareness. Journal of Modern Transportation, 19(3), 199–206.CrossRefGoogle Scholar
  19. 19.
    Xia, Z.-Q., Hu, Z.-Z., & Luo, J. P. (2016). EAVTP: An environment adaptive vehicle trajectory prediction method. Journal of Chinese Computer System, 37(10), 2375–2379.Google Scholar
  20. 20.
    Trasarti, R., Guidotti, R., Monreale, A., & Giannotti, F. (2015). MyWay: Location prediction via mobility profiling. Science, Information Systems, 64, 350–367.CrossRefGoogle Scholar
  21. 21.
    Kumar, A. A., Kang, J. E., Kwon, C., & Nikolaev, A. (2016). Inferring origin-destination pairs and utility-based travel preferences of shared mobility system users in a multi-model environment. Science, Transportation Research Part B, 91, 270–291.CrossRefGoogle Scholar
  22. 22.
    Ziebart, B. D., Maas, A. L., Dey, A. K., & Bagnell, J. A. (2008). Navigate like a cabbie: Probabilistic reasoning from observed context-aware behavior. In UbiComp08, September 21–24, 2008, Seoul Korea (pp. 322–331). doi: 10.1145/1409635.1409678.
  23. 23.
    Cheu, R. L., & Kreinovich, V. (2007). Use of deterministic assignment algorithms in stochastic networks analysis of equivalent link disutility function. Submitted to Transportmetriac for Review and Publication, University of Texas, Engineering Paso.Google Scholar
  24. 24.
    Nasibov, E., & Diker, A. C. (2016). A multi-criteria route planning model based on fuzzy preference degree of stops. Applied Soft Computing, 49, 13–26.CrossRefGoogle Scholar
  25. 25.
    Chulyadyo, R., & Leray, P. (2014). A personalized recommender system from probabilistic relational model and users preference. In Procedia Computer Science, 18th International Conference on Knowledge-Based and Intelligent Information Engineering System CKES 2014 (Vol. 35, pp. 1063–1072).Google Scholar
  26. 26.
    Yap, M. D., Correia, G., & Van Arem, B. (2016). Preference of travellers for using automated vehicles as last mile public transport of multimodal train trips. Transportation Research Part A, 94, 1–16.Google Scholar
  27. 27.
    Mishra, H. K., & Chanda Sekhar, C. (2009). Variational Gaussian mixture models for speech emotion recognition. In 2009 Seventh International Conference on Advances in Pattern Recognition (pp. 183–186). IEEE. doi: 10.1109/ICAPR.2009.89.
  28. 28.
    Nikolaos, N., & Bors, A. G. (2006). Variational learning for Gaussian mixture models. IEEE Transaction on System, Man and Cybernetics-Part B: Cybernetics, 36, 849–862.CrossRefGoogle Scholar
  29. 29.
    Qiao, S.-J., Kun, J., Han, N., Tang, C.-J., Ge, S.-D.-J., & Gutierrez, L. A. (2015). GMTP: A trajectory prediction algorithm based on Gaussian mixture model. Journal of Software, 26(5), 1048–1063.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on TransportationChangsha University of Science and TechnologyChangshaChina
  2. 2.School of Computer and Communication EngineeringChangsha University of Science and TechnologyChangshaChina
  3. 3.School of ComputerNational university of defense technologyChangshaChina

Personalised recommendations