Wireless Personal Communications

, Volume 97, Issue 3, pp 4431–4450 | Cite as

New TR-UWB Receiver Algorithm Design to Mitigate MUI in Concurrent Schemes

  • Mohammed Saeed Mohammed
  • Mandeep Jit Singh
  • Mardina Abdullah
Article
  • 42 Downloads

Abstract

Impulse-radio ultra-wideband (IR-UWB) technology has gained popularity in wireless personal area networks (WPANs) because of its promising aspect in providing extremely high data rates at low cost. However, multi-user interference (MUI) adversely affects the IR-UWB communication technique, especially in WPANs concurrent transmission scenarios. In this paper, we solve this problem via proposing a new correlation technique, namely, multi-point impulse correlation (MPIC), based on a new mask equation design. The proposed MPIC technique outperforms the traditional technique in TR receivers in terms of the obtained symbol error rate (SER) value (by 4.5 db) as confirmed by the simulation results. Multiple scenarios were conducted which confirm that the proposed MPIC technique offers better SER performance in comparison with TR. According to the obtained results, MPIC is highly successful in reducing MUI, especially in concurrent schemes and with a large number of users.

Keywords

MUI WPAN TR receiver UWB 

References

  1. 1.
    Dang, Q. H., & van der Veen, A.-J. (2007). A decorrelating multiuser receiver for transmit-reference UWB systems. IEEE Journal on Selected Topics in Signal Processing, 1(3), 431–442.CrossRefGoogle Scholar
  2. 2.
    Guimarães, D. A., & Gomes, G. G. R. (2012). Introduction to ultra wideband impulse radio. Revista Telecomunicacoes, 14(1), 49–61.Google Scholar
  3. 3.
    Chung, W. C., August, N. J., & Ha, D. S. (2005). Signaling and multiple access techniques for ultra wideband 4G wireless communication systems. IEEE Wireless Communications, 12(2), 46–55.CrossRefGoogle Scholar
  4. 4.
    Reed, J. (2005). An introduction to ultra wideband communication systems. Upper Saddle River, NJ: Prentice Hall PTR.Google Scholar
  5. 5.
    Huang, T.-J., & Yang, J.-F. (2017). An effective timing synchronization scheme for DHTR UWB receivers. Wireless Personal Communications. doi:10.1007/s11277-017-4009-6.
  6. 6.
    Lee, W. (2010). Ultra-wideband systems: Review. Naresuan University Engineering Journal, 5(2), 63–77.Google Scholar
  7. 7.
    Kharrat-Kammoun, F., Le Martret, C., & Ciblat, P. (2009). Performance analysis of IR-UWB in a multi-user environment. IEEE Transactions on Wireless Communications, 8(11), 5552–5563.CrossRefGoogle Scholar
  8. 8.
    Arslan, H., Chen, Z. N., & Di Benedetto, M.-G. (2006). Ultra wideband wireless communication. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  9. 9.
    Shi, N., & Niemegeers, I. (2009). Multi-hop IR-UWB WPAN architecture and protocols. In IEEE international conference on wireless and mobile computing, networking and communications (pp. 356–362).Google Scholar
  10. 10.
    Li, J.-S., Kao, H.-C., & Cheng, S.-Y. (2007). Multi-hop networking with space reuse in IEEE 802.15.3 UWB WPANs. In The 2nd international conference on wireless broadband and ultra wideband communications (AusWireless 2007) (pp. 73–73).Google Scholar
  11. 11.
    Cassioli, D., Win, M., Vatalaro, F., & Molisch, A. (2007). Low complexity rake receivers in ultra-wideband channels. IEEE Transactions on Wireless Communications, 6(4), 1265–1275.CrossRefGoogle Scholar
  12. 12.
    Kim, D. I., Member, S., Jia, T., & Member, S. (2008). M-ary orthogonal coded/balanced ultra-wideband transmitted-reference systems in multipath. IEEE Transactions on Communications, 56(1), 102–111.CrossRefGoogle Scholar
  13. 13.
    Cheng, X., & Guan, Y. L. (2012). Pre/post-rake diversity combining for UWB communications in the presence of pulse overlap. IEEE Transactions on Wireless Communications, 11(2), 481–487.CrossRefGoogle Scholar
  14. 14.
    Tang, J., Xu, Z., & Sadler, B. (2007). Performance analysis of b-bit digital receivers for TR-UWB systems with inter-pulse interference. IEEE Transactions on Wireless Communications, 6(2), 494–505.CrossRefGoogle Scholar
  15. 15.
    Hazra, R., & Tyagi, A. (2013). Cooperative impulse radio ultra-wideband communication using coherent and non-coherent detectors: A review. Wireless Personal Communications, 77(1), 719–748.CrossRefGoogle Scholar
  16. 16.
    Romme, J., & Witrisal, K. (2006). Transmitted-reference UWB systems using weighted autocorrelation receivers. IEEE Transactions on Microwave Theory and Techniques, 54(4), 1754–1761.CrossRefGoogle Scholar
  17. 17.
    Taghipour, J., Vakili, V. T., & Abbasi-Moghadam, D. (2012). Comparison of kurtosis and fourth power detectors with applications to IR-UWB OOK systems. International Journal of Communications, Network and System Sciences, 5(1), 43–49.CrossRefGoogle Scholar
  18. 18.
    D’Amico, A. A., & Taponecco, L. (2006). A differential receiver for UWB systems. IEEE Transactions on Wireless Communications, 5(7), 1601–1605.CrossRefGoogle Scholar
  19. 19.
    Hazra, R., & Tyagi, A. (2014). A survey on various coherent and non-coherent IR-UWB receivers. Wireless Personal Communications, 79(3), 2339–2369.CrossRefGoogle Scholar
  20. 20.
    Jin, Y., Liu, H., Kim, K. J., & Kwak, K. S. (2014). A reconfigurable digital receiver for transmitted reference pulse cluster UWB communications. IEEE Transactions on Vehicular Technology, 63(9), 4734–4740.CrossRefGoogle Scholar
  21. 21.
    Chen, Y., & Beaulieu, N. (2008). Improved receivers for generalized UWB transmitted reference systems. IEEE Transactions on Wireless Communications, 7(2), 500–504.CrossRefGoogle Scholar
  22. 22.
    Milanovic, J., Herceg, M., Vranjes, M., & Job, J. (2015). Method for bandwidth efficiency increasing of M-ary PPM transmitted-reference UWB communication systems. Wireless Personal Communications, 83(2015), 1927–1944.CrossRefGoogle Scholar
  23. 23.
    Witrisal, K., Leus, G., Janssen, G., Pausini, M., Troesch, F., Zasowski, T., et al. (2009). Noncoherent ultra-wideband systems. IEEE Signal Processing Magazine, 26(4), 48–66.CrossRefGoogle Scholar
  24. 24.
    Xu, Z., & Sadler, B. (2006). Multiuser transmitted reference ultra-wideband communication systems. IEEE Journal on Selected Areas in Communications, 24(4), 766–772.CrossRefGoogle Scholar
  25. 25.
    Zhao, S. (2006). Pulsed ultra-wideband: Transmission, detection, and performance. Corvallis: Oregon State University.Google Scholar
  26. 26.
    Le Boudec, J.-Y., & Merz, R. (2008). Concurrent and parallel transmissions are optimal for low data-rate IR-UWB networks. In 2008 IEEE 19th international symposium on personal, indoor and mobile radio communications (pp. 1–6).Google Scholar
  27. 27.
    Merz, R., Widmer, J., Le Boudec, J.-Y., & Radunović, B. (2005). A joint PHY/MAC Architecture for low-radiated power TH-UWB wireless ad-hoc networks. Wireless Communications and Mobile Computing, 5(5), 567–580.CrossRefGoogle Scholar
  28. 28.
    Flury, M., & Merz, R. (2007). Managing impulsive interference in impulse. ST Journal of Research Wireless Sensor Networks, 4(1), 118–130.Google Scholar
  29. 29.
    Jiang, L., Guo, J., & Wang, Y. (2006). A novel approach to interference mitigation with coexisting spectrum users for UWB pulse radio. In International conference on wireless communications, networking and mobile computing (pp. 1–4).Google Scholar
  30. 30.
    Belghith, S., & Naanaa, A. (2011). Performance enhancement of a time hopping—Pulse position modulation ultra-wide-band system using guided local search. IET Communications, 5(15), 2212–2220.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Young, D. J., & Beaulieu, N. C. (2012). Multiuser interference mitigation in time-hopped ultra-wideband receivers. In IEEE international conference on ultra-wideband (pp. 125–129).Google Scholar
  32. 32.
    Hung, H.-L. (2015). Performance analysis of multistage interference cancellation in THUWB systems using adaptive differential evolution algorithm with novel mutation and crossover strategies. Wireless Personal Communications, 82(3), 1179–1199.CrossRefGoogle Scholar
  33. 33.
    Hamidoun, K., Elassali, R., Elhillali, Y., Rivenq, A., Elbaamrani, K., & Boukour, F. E. (2015). A new multi-user ultra wide band system based on modified Gegenbauer functions and M-OAM modulation for communication of intelligent transportation systems. Wireless Personal Communications, 82(4), 2115–2134.CrossRefGoogle Scholar
  34. 34.
    Shao, H., & Beaulieu, N. C. (2011). Direct sequence and time-hopping sequence designs for narrowband interference mitigation in impulse radio UWB systems. IEEE Transactions on Communications, 59(7), 1957–1965.CrossRefGoogle Scholar
  35. 35.
    Muqaibel, A. H., & Jadallah, A. N. (2015). SINR evaluation for improved practical coordinated multi-point clustering. Wireless Personal Communications, 83(4), 3091–3102.CrossRefGoogle Scholar
  36. 36.
    Xiong, H. (2017). An efficient narrowband interference suppression approach in ultra-wideband receiver. IEEE Sensors Journal, 17(9), 2741–2748.CrossRefGoogle Scholar
  37. 37.
    Kouassi, K., Clavier, L., Doumbia, I., & Rolland, P.-A. (2013). Optimal PWR codes for TH-PPM UWB multiple-access interference mitigation. IEEE Communications Letters, 17(1), 103–106.CrossRefGoogle Scholar
  38. 38.
    Juanda, F. N. U., Shu, W., & Chang, J. S. (2017). A 10-GS/s 4-bit single-core digital-to-analog converter for cognitive ultrawidebands. IEEE Transactions on Circuits and Systems Part II: Express Briefs, 64(1), 16–20.CrossRefGoogle Scholar
  39. 39.
    Mehbodniya, A., & Aissa, S. (2009). Effects of MB-OFDM system interference on the performance of DS-UWB. IEEE Transactions on Vehicular Technology, 58(8), 4665–4669.CrossRefGoogle Scholar
  40. 40.
    Chen, H., Guo, Z., Yao, R. Y., Shen, X., & Li, Y. (2006). Performance analysis of delayed acknowledgment scheme in UWB-based high-rate WPAN. IEEE Transactions on Vehicular Technology, 55(2), 606–621.CrossRefGoogle Scholar
  41. 41.
    Xu, H., & Yang, L. (2010). Modeling and transceiver design for asymmetric UWB links with heterogeneous nodes. IEEE Transactions on Communications, 58(6), 1834–1842.CrossRefGoogle Scholar
  42. 42.
    Li, M. (2015). Optimal receiver scheme for transmitted-reference ultra-wideband system in coal mine. Journal of Communication, 10(3), 206–212.CrossRefGoogle Scholar
  43. 43.
    Ahmed, Q. Z., Park, K.-H., & Alouini, M.-S. (2015). Ultrawide bandwidth receiver based on a multivariate generalized Gaussian distribution. IEEE Transactions on Wireless Communications, 14(4), 1800–1810.CrossRefGoogle Scholar
  44. 44.
    Di Benedetto, M.-G., & Giancola, G. (2004). Understanding ultra wide band radio fundamentals. Upper Saddle River: Prentice Hall PTR.Google Scholar
  45. 45.
    Houda, C., Moez, H., & Ridha, B. (2012). Analytical approach for the TH-BPSK ultra-wideband systems performance. International Journal of Computer Theory and Engineering, 4(6), 987–989.CrossRefGoogle Scholar
  46. 46.
    Molisch, A., Cassioli, D., Emami, S., Fort, A., Kannan, B., Karedal, J., et al. (2006). A comprehensive standardized model for ultrawideband propagation channels. IEEE Transactions on Antennas and Propagation, 54(11), 3151–3166.CrossRefGoogle Scholar
  47. 47.
    Giancola, G., & Di Benedetto, M.-G. (2006). A novel approach for estimating multi-user interference in impulse radio UWB networks: The pulse collision model. Signal Processing, 86(9), 2185–2197.CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built EnvironmentsUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Electrical Engineering Technical CollegeMiddle Technical UniversityBaghdadIraq

Personalised recommendations