Wireless Personal Communications

, Volume 97, Issue 3, pp 4285–4304 | Cite as

Small-Scale Fading Statistics of Emerging 3-D Mobile Radio Cellular Propagation Channels

  • Abrar Ahmed
  • Syed Junaid NawazEmail author
  • Sardar Muhammad Gulfam


In delivering fifth generation (5G) communication networks, the fundamental advancements in the scale of antenna arrays, density of networks, mobility of communicating nodes, size of cells, and range of frequencies necessitate the derivation of an appropriate and reliable channel model. A tunable three dimensional (3-D) geometric channel model comprehending the mobility of user terminal together with high degree of flexibility in modelling the shape, orientation, and scale of the scattering region is proposed. Characterization of Doppler spectrum, quantization of multipath dispersion in angular domain, and second order fading statistics of the radio propagation channel is presented. Mathematical expressions for joint and marginal probability density function of Doppler shift and multipath power are derived for this advanced 3-D hollow geometric scattering model. Next, an analysis on the Doppler spectrum is presented, where the impact of various physical channel parameters on its statistical characteristics is analyzed. Since, the quantification of multipath dispersion in 3-D angular domain is of vital importance for designing large scale planner antenna arrays with very high directional resolution for emerging 5G communications, therefore, a thorough analysis on the multipath shape factors (SFs) of the proposed analytical 3-D channel model is conducted. Finally, the analysis on SFs is extended for characterization of second order fading statistics of multipath channels.


Doppler effect Doppler spectrum Geometric model 3-D Ellipsoid Cylinder Shape factors Second order statistics Fading statistics 



A part of this research work was supported by the EU ATOM-690750 research project approved under the call H2020-MSCA-RISE-2015.


  1. 1.
    Clerckx, B., Lozano, A., Sesia, S., van Rensburg, C., & Papadias, C. B. (2009). 3GPP LTE and LTE-Advanced. EURASIP Journal on Wireless Communications and Networking, 2009(1), 472124.CrossRefGoogle Scholar
  2. 2.
    MacCartney, G. R., Zhang, J., Nie, S., & Rappaport, T. S. (2013). Path loss models for 5G millimeter wave propagation channels in urban microcells. In Proceedings of IEEE Global Communications Conference, Exhibition and Industry Forum (GLOBECOM13) (pp. 3948–3953).Google Scholar
  3. 3.
    Jungnickel, V. , Manolakis, K., Zirwas, W., Panzner, B., Braun, V., Lossow, M., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–51.CrossRefGoogle Scholar
  4. 4.
    Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRefGoogle Scholar
  5. 5.
    Nawaz, S. J., Riaz, M., Khan, N. M., & Wyne, S. (2015). Temporal analysis of a 3D ellipsoid channel model for the vehicle-to-vehicle communication environments. Wireless Personal Communications, 82(3), 1337–1350.CrossRefGoogle Scholar
  6. 6.
    Biswas, S., Tatchikou, R., & Dion, F. (2006). Vehicle-to-vehicle wireless communication protocols for enhancing highway traffic safety. IEEE Communications Magazine, 44(1), 74–82.CrossRefGoogle Scholar
  7. 7.
    Andrews, J., Buzzi, S., Choi, W., Hanly, S., Lozano, A., Soong, A., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRefGoogle Scholar
  8. 8.
    Iltis, R., & Fuxjaeger, A. W. (1991). A digital DS spread-spectrum receiver with joint channel and Doppler shift estimation. IEEE Transactions on Communications, 39(8), 1255–1267.CrossRefGoogle Scholar
  9. 9.
    Vatalaro, F., & Forcella, A. (1997). Doppler spectrum in mobile-to-mobile communications in the presence of three-dimensional multipath scattering. IEEE Transactions on Vehicular Technology, 46(1), 213–219.CrossRefGoogle Scholar
  10. 10.
    Ertel, R. B., & Reed, J. H. (1998). Impact of path-loss on the Doppler spectrum for the geometrically based single bounce vector channel models. In Proceedings of 48th IEEE Vehicular Technology Conference (Vol. 1, pp. 586–590). IEEE.Google Scholar
  11. 11.
    Qu, S., & Yeap, T. (1999). A three-dimensional scattering model for fading channels in land mobile environment. IEEE Transactions on Vehicular Technology, 48(3), 765–781.CrossRefGoogle Scholar
  12. 12.
    Petrus, P., Reed, J. H., & Rappaport, T. S. (2002). Geometrical-based statistical macrocell channel model for mobile environments. IEEE Transactions on Communications, 50(3), 495–502.CrossRefGoogle Scholar
  13. 13.
    Zhao, X., Kivinen, J., Vainikainen, P., & Skog, K. (2003). Characterization of Doppler spectra for mobile communications at 5.3 GHz. IEEE Transactions on Vehicular Technology, 52(1), 14–23.CrossRefGoogle Scholar
  14. 14.
    Acosta, G., Tokuda, K., & Ingram, M. A. (2004). Measured joint Doppler-delay power profiles for vehicle-to-vehicle communications at 2.4 GHz. In Proceedings of IEEE Global Telecommunications Conference (Vol. 6, pp. 3813–3817).Google Scholar
  15. 15.
    Paier, A., Karedal, J., Czink, N., Hofstetter, H., Dumard, C., Zemen, T., Tufvesson, F., Molisch, A. F., & Mecklenbraüker, C. F. (2007). Car-to-car radio channel measurements at 5 GHz: Pathloss, power-delay profile, and delay-Doppler spectrum. In Proceedings of 4th International Symposium on Wireless Communication Systems (pp. 224–228). IEEE.Google Scholar
  16. 16.
    Qu, S. (2009). An analysis of probability distribution of Doppler shift in three-dimensional mobile radio environments. IEEE Transactions on Vehicular Technology, 58(4), 1634–1639.CrossRefGoogle Scholar
  17. 17.
    Janaswamy, R. (2002). Angle of arrival statistics for a 3-D spheroid model. IEEE Transactions on Vehicular Technology, 51(5), 1242–1247.CrossRefGoogle Scholar
  18. 18.
    Nawaz, S. J., Khan, N. M., Patwary, M. N., & Moniri, M. (2011). Effect of directional antenna on the Doppler spectrum in 3-D mobile radio propagation environment. IEEE Transactions on Vehicular Technology, 60(7), 2895–2903.CrossRefGoogle Scholar
  19. 19.
    Pham, V.-H., Taieb, M. H., Chouinard, J.-Y., Roy, S., & Huynh, H.-T. (2011). On the double Doppler effect generated by scatterer motion. REV Journal of Electronics and Communications, 1(1), 30–37.CrossRefGoogle Scholar
  20. 20.
    Seyedi, Y., Soltani, M. D., Moharrer, A., & Safavi-Hamami, S.-M. (2012). Simulation of Doppler spectrum for vehicle-to-vehicle communications channels with directive antennas. In Proceedings of International Conference on Selected Topics in Mobile and Wireless Networking (iCOST) (pp. 13–17). IEEE.Google Scholar
  21. 21.
    Durgin, G., & Rappaport, T. S. (1998). Basic relationship between multipath angular spread and narrowband fading in wireless channels. Electronics Letters, 34(25), 2431–2432.CrossRefGoogle Scholar
  22. 22.
    Durgin, G. D., & Rappaport, T. S. (2000). Theory of multipath shape factors for small-scale fading wireless channels. IEEE Transactions on Antennas and Propagation, 48(5), 682–693.CrossRefGoogle Scholar
  23. 23.
    Valchev, D., & Brady, D. (2009). Three-dimensional multipath shape factors for spatial modeling of wireless channels. IEEE Transactions on Wireless Communications, 8(11), 5542–5551.CrossRefGoogle Scholar
  24. 24.
    Lu, J. H., & Han, Y. (Nov. 2009). Application of multipath shape factors in Nakagami-m fading channel. In Proceedings of International Conference on Wireless Communication Signal Processing (pp. 1–4).Google Scholar
  25. 25.
    Shang, H. Y, Han, Y., Lu, J. H. (2010). Statistical analysis of Rician and Nakagami-m fading channel using multipath shape factors. In Proceedings of Second International Conference on Computational Intelligence and Natural Computing (CINC) (Vol. 1, pp. 398–401).Google Scholar
  26. 26.
    loni, Z. M., & Khan, N. M. (2010). Analysis of fading statistics based on geometrical and statistical channel models. In Proceedings of International Conference on Emerging Technologies (ICET) (pp. 221–225).Google Scholar
  27. 27.
    Loni, Z. M., Ullah, R., & Khan, N. M. (2011). Analysis of fading statistics based on angle of arrival measurements. In Proceedings of International Workshop on Antenna Technology (IWAT) (pp. 314–319).Google Scholar
  28. 28.
    loni, Z . M., & Khan, N . M. (2013). Analysis of fading statistics in cellular mobile communication systems. The Journal of Supercomputing, 64(2), 295–309.CrossRefGoogle Scholar
  29. 29.
    Youssef, N., Wang, C.-X., & Patzold, M. (2005). A study on the second order statistics of Nakagami-Hoyt mobile fading channels. IEEE Transactions on Vehicular Technology, 54(4), 1259–1265.CrossRefGoogle Scholar
  30. 30.
    Filho, J., & Yacoub, M. (2009). On the second-order statistics of Nakagami fading simulators. IEEE Transactions on Communications, 57(12), 3543–3546.CrossRefGoogle Scholar
  31. 31.
    Derpich, M., & Feick, R. (2014). Second-order spectral statistics for the power gain of wideband wireless channels. IEEE Transactions on Vehicular Technology, 63(3), 1013–1031.CrossRefGoogle Scholar
  32. 32.
    Abdi, A., Lau, W., Alouini, M.-S., & Kaveh, M. (2003). A new simple model for land mobile satellite channels: First- and second-order statistics. IEEE Transactions on Wireless Communications, 2(3), 519–528.CrossRefGoogle Scholar
  33. 33.
    Ahmed, A., Nawaz, S. J., & Gulfam, S. M. (2015). A 3-D propagation model for emerging land mobile radio cellular environments. PLoS ONE, 10(8), e0132555.CrossRefGoogle Scholar
  34. 34.
    Ahmed, A., Nawaz, S. J., Khan, N. M., Patwary, M. N., & Abdel-Maguid, M. (2015). Angular characteristics of a unified 3-D scattering model for emerging cellular networks. In Proceedings of IEEE International Conference on Communications (ICC) (pp. 2450–2456).Google Scholar
  35. 35.
    Olenko, A. Y., Wong, K. T., Qasmi, S. A., & Ahmadi-Shokouh, J. (2006). Analytically derived uplink/downlink ToA and 2-D DoA distributions with scatterers in a 3-D hemispheroid surrounding the mobile. IEEE Transactions on Antennas and Propagation, 54(9), 2446–2454.CrossRefGoogle Scholar
  36. 36.
    Nawaz, S. J., Qureshi, B. H., & Khan, N. M. (2010). A generalized 3-D scattering model for a macrocell environment with a directional antenna at the BS. Transactions on Vehicular Technology, 59(7), 3193–3204.CrossRefGoogle Scholar
  37. 37.
    Khan, N. M. (2006). Modeling and characterization of multipath fading channels in cellular mobile communication system. Ph.D. dissertation, School of Electrical Engineering and Telecommunication, University of New South Wales (UNSW), Australia.Google Scholar
  38. 38.
    Cao, Z., & Yao, Y.-D. (2001). Definition and derivation of level crossing rate and average fade duration in an interference-limited environment. In IEEE VTS 54th Vehicular Technology Conference (Vol. 3, pp. 1608–1611).Google Scholar
  39. 39.
    Morris, J., & Chang, J.-L. (1995). Burst error statistics of simulated viterbi decoded BFSK and high-rate punctured codes on fading and scintillating channels. IEEE Transactions on Communications, 43(2/3/4), 695–700.CrossRefGoogle Scholar
  40. 40.
    Goldsmith, A., & Chua, S.-G. (1997). Variable-rate variable-power MQAM for fading channels. IEEE Transactions on Communications, 45(10), 1218–1230.CrossRefGoogle Scholar
  41. 41.
    Chang, L. (1991). Throughput estimation of ARQ protocols for a Rayleigh fading channel using fade- and interfade-duration statistics. IEEE Transactions on Vehicular Technology, 40(1), 223–229.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations