Wireless Personal Communications

, Volume 97, Issue 3, pp 4211–4227 | Cite as

Batching with Reneging and AMC for VoD Streaming Service over Wireless Networks

  • Soo-young Jang
  • Chae Y. LeeEmail author


In this paper, we develop a batching algorithm to provide Video on Demand (VoD) streaming service over wireless networks considering heterogeneous characteristics of VoD service. The proposed batching service considers both reneging behavior and adaptive modulation and coding (AMC). Two reneging behavior models are considered: the exponential and the convex models. A nonlinear programming problem is suggested for each reneging model to minimize the service latency with the reneging probability and the network capacity constraints. The performance of the reneging and AMC based network capacity of the proposed batching algorithm is experimented and compared to the unicast procedures. Simulations are performed to illustrate the excellence of the proposed batching algorithm. The AMC based network capacity and exponential reneging improve the latency by 66–77 and 35–46% respectively for high service arrival rates.


VoD streaming service Batching window size Reneging AMC Nonlinear programming 


  1. 1.
    Choi, J., Reaz, A. S., & Mukherjee, B. (2011). A survey of user behavior in VoD service and bandwidth-saving multicast streaming schemes. IEEE Communications Surveys and Tutorials, 14(1), 156–169.CrossRefGoogle Scholar
  2. 2.
    Sharangi, S., Krishnamurti, R., & Hefeeda, M. (2011). Energy-efficient multicating of scalable video streams over WiMAX networks. IEEE Transactions on Multimedia, 13(1), 102–115.CrossRefGoogle Scholar
  3. 3.
    Chuah, S.-P., Chen, Z., & Tan, Y.-P. (2012). Energy-efficient resource allocation and scheduling for multicast of scalable video over wireless networks. IEEE Transactions on Multimedia, 14(4), 1324–1336.CrossRefGoogle Scholar
  4. 4.
    da Fonseca, N. L. S., & Facanha, R. D. A. (2002). The Look-ahead-maximize-batch batching policy. IEEE Transactions on Multimedia, 4(1), 114–120.CrossRefGoogle Scholar
  5. 5.
    Huang, L., Chew, K. A., Thilakawardana, S., Liu, Y., Moessner, K., & Tafazolli, R. (2006). Efficient group-based multimedia-on-demand service delivery in wireless networks. IEEE Transactions on Broadcasting, 52(4), 492–504.CrossRefGoogle Scholar
  6. 6.
    Kwon, J. B., & Yeom, H. Y. (2002). Providing VCR functionality in staggered video broadcasting. IEEE Transactions on Consumer Electronics, 48(1), 41–48.CrossRefGoogle Scholar
  7. 7.
    Viswanathan, S., & Imielinski, T. (1996). Metropolitan area video-on-demand service using pyramid broadcasting. Multimedia Systems, 4, 179–208.CrossRefGoogle Scholar
  8. 8.
    Hua, K. A., and Sheu S. (1997). Skyscraper broadcasting: a new broadcasting scheme for metropolitan video-on-demand systems. In Proceedings of ACM SIGCOMM (pp. 89–99).Google Scholar
  9. 9.
    Li-Shen, J., & Li-Ming, T. (1998). Fast data broadcasting and receiving scheme for popular video service. IEEE Transactions on Broadcasting, 44(1), 100–105.CrossRefGoogle Scholar
  10. 10.
    Juhn, L.-S., & Tseng, L.-M. (1997). Harmonic broadcasting for video-on-demand service. IEEE Transactions on Broadcasting, 43(3), 268–271.CrossRefGoogle Scholar
  11. 11.
    Kim, H.-I., & Park, S.-K. (2008). A hybrid video-on-demand data broadcasting and receiving scheme of harmonic and staggered schemes. IEEE Transactions on Multimedia, 54(4), 771–778.Google Scholar
  12. 12.
    Wang, X., Chen, M., Kwon, T. T., Yang, L. T., & Leung, V. C. M. (2013). AMES-cloud: A framework of adaptive mobile video streaming and efficient social video sharing in the clouds. IEEE Transactions on Multimedia, 15(4), 811–820.CrossRefGoogle Scholar
  13. 13.
    Hua, K. A., Cai, Y., and Sheu, S.(1998). Patching: A multicast technique for true video-on-demand services. In Proceedings ACM international conference on multimedia (pp. 191–200).Google Scholar
  14. 14.
    Lixin, G., & Towsley, D. (2001). Threshold-based multicast for continuous media delivery. IEEE Transactions on Multimedia, 3(4), 405–414.CrossRefGoogle Scholar
  15. 15.
    Dan, A., Shahabuddin, P., Sitram, D., & Towsley, D. (1995). Channel allocation under batching and VCR control in video-on-demand systems. Journal of Parallel and Distributed Computing, 30, 168–179.CrossRefGoogle Scholar
  16. 16.
    Dan, A., Sitaram, D., and Shahabuddin, P. (1994). Scheduling policies for an on-demand video server with batching. In Proceedings the second ACM international conference on Multimedia (pp. 15–23).Google Scholar
  17. 17.
    Aggarwal, C.C.,Wolf, J.L., and Yu P.S. (1996). On Optimal Batching Policies for Video-on-Demand Storage Servers. In Proceedings IEEE international conference on multimedia computing and systems (pp. 253–258).Google Scholar
  18. 18.
    Sarhan, N. J., and Qudah B. (2007). Efficient Cost-based scheduling for scalable media streaming. In Proceedings MMCN.Google Scholar
  19. 19.
    Kim, H. J., & Zhu, Y. (1998). Channel allocation problem in VoD system using both batching and adaptive piggybacking. IEEE Transactions on Consumer Electronics, 44(3), 969–976.CrossRefGoogle Scholar
  20. 20.
    Chan, S.-H. G., & Tobagi, F. (2001). Tradeoff Between System profit and user delay/loss in providing near video-on-demand service. IEEE Transactions on Circuits and Systems for Video Technology, 11(8), 916–927.CrossRefGoogle Scholar
  21. 21.
    Tokekar, V., Ramani, A. K., and Tokekar, S. (2005). Analysis of batcing policy in view of user reneging in VOD system. In Proceedings IEEE Indicon (pp. 399–403).Google Scholar
  22. 22.
    Qudah, B., and Sarhan, N. J (2006) Towards scalable delivery of video streams to heterogeneous receivers. In Proceedings the 14th annual ACM international conference on Multimedia, Santa Barbara, CA, USA (pp. 347–356).Google Scholar
  23. 23.
    Poon, W.-F., Lo, K. T., & Feng, J. (2001). Adaptive batching scheme for multicast video-on-demand systems. IEEE Transactions on Multimedia, 47(1), 66–70.Google Scholar
  24. 24.
    Poon, W. F., Lo, K. T., & Feng, J. (2002). A Hybrid delivery strategy for a video-on-demand system with customer reneging behavior. IEEE Transactions on Broadcasting, 48, 140–150.Google Scholar
  25. 25.
    GPP TS 36.213 V11.3.0 technical specification. Physical layer procedures (Release 11).
  26. 26.
    Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., & Knuth, D. E. (1996). On the Lambert W function. Advances in Computational Mathematics, 5, 329–359.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mathur, K., Salkin, H. M., & Mohanty, B. B. (1986). A note on a general non-linear knapsack problem. Operations Research Letters, 5(2), 79–81.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Industrial and Systems EngineeringKAISTTaejonKorea

Personalised recommendations