Wireless Personal Communications

, Volume 97, Issue 3, pp 4111–4128 | Cite as

Design of Finite-Length Precoded EWF Codes for Scalable Video Streaming

  • Lei YuanEmail author
  • Keyan Deng
  • Huaan Li


Expanding window fountain (EWF) codes, which can provide unequal erasure protection property, are used as an efficient application-layer forward error correction solution for scalable multimedia data transmission over packet networks. Similar to Raptor codes, precoded EWF codes can provide linear coding complexity. However, only when the information length is large, the precoded EWF codes in previous literatures can achieve good performance. In this paper, we carefully investigate how to choose code rates of precodes and degree distributions of EWF codes for different information lengths. Our proposed precoded EWF coding scheme can achieve superior performance compared to the previous scheme for small and moderate information lengths. Simulation results for the scalable video coding extension of the H.264/AVC standard show that, compared with the previous scheme, our proposed scheme requires a smaller reception overhead to recover the base layer.


Fountain codes Precoded EWF codes Scalable video transmission Unequal erasure protection 



This work was partly presented at the IEEE VTC2016-Spring, Nanjing, China, May 2016 and supported by the Fundamental Research Funds for the Central Universities lzujbky-2017-188.


  1. 1.
    Mirrezaei, S., Faez, K., & Yousefi, S. (2014). Towards fountain codes. Wireless Personal Communications, 77(2), 1533–1562.CrossRefGoogle Scholar
  2. 2.
    Luby, M. (2002). LT codes. In Proceedings of the 43rd annual IEEE symposium on foundations of computer science (FOCS), Vancouver, BC, Canada, November (pp. 271–280).Google Scholar
  3. 3.
    Shokrollahi, A. (2006). Raptor codes. IEEE Transactions on Information Theory, 52(6), 2551–2567.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Shokrollahi, A., & Luby, M. (2011). Raptor codes. Foundations and trends® in communications and information theory (Vol. 6, 122 p). Boston, MA: Now Publishers Inc.Google Scholar
  5. 5.
    Etesami, O., & Shokrollahi, A. (2006). Raptor codes on binary memoryless symmetric channels. IEEE Transactions on Information Theory, 52(5), 2033–2051.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Sivasubramanian, B., & Leib, H. (2008). Fixed-rate Raptor codes over Rician fading channels. IEEE Transactions on Vehicular Technology, 57(6), 3905–3911.CrossRefGoogle Scholar
  7. 7.
    Tian, S., Li, Y., Shirvanimoghaddam, M., & Vucetic, B. (2013). A physical-layer rateless code for wireless channels. IEEE Transactions on Communications, 61(6), 2117–2127.CrossRefGoogle Scholar
  8. 8.
    Taubman, D., & Marcellin, M. (2001). JPEG2000: Image compression fundamentals, standards and practice. Berlin: Kluwer Academic Publishers.Google Scholar
  9. 9.
    Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology, 17(9), 1103–1120.CrossRefGoogle Scholar
  10. 10.
    Aydinlik, M., & Salehi, M. (2008). Turbo coded modulation for unequal error protection. IEEE Transactions on Communications, 56(4), 555–564.CrossRefGoogle Scholar
  11. 11.
    Rahnavard, N., Pishro-Nik, H., & Fekri, F. (2007). Unequal error protection using partially regular LDPC codes. IEEE Transactions on Communications, 55(3), 387–391.CrossRefGoogle Scholar
  12. 12.
    Gong, C., Yue, G., & Wang, X. (2011). Message-wise unequal error protection based on low-density parity-check codes. IEEE Transactions on Communications, 59(4), 1019–1030.CrossRefGoogle Scholar
  13. 13.
    Arslan, S. S., Cosman, P. C., & Milstein, L. B. (2012). Concatenated block codes for unequal error protection of embedded bit streams. IEEE Transactions on Image Processing, 21(3), 1111–1122.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Condo, C., Masera, G., & Montuschi, P. (2015). Unequal error protection of memories in LDPC decoders. IEEE Transactions on Computers, 64(10), 2981–2993.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rahnavard, N., Vellambi, B. N., & Fekri, F. (2007). Rateless codes with unequal error protection property. IEEE Transactions on Information Theory, 53(4), 1521–1532.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hsiao, H.-F., & Ciou, Y.-J. (2014). Layer-aligned multipriority rateless codes for layed video streaming. IEEE Transactions on Multimedia, 24(8), 1395–1404.Google Scholar
  17. 17.
    Cataldi, P., Grangetto, M., Tillo, T., Magli, E., & Olmo, G. (2010). Sliding window raptor codes for efficient scalable wireless video broadcasting with unequal loss protection. IEEE Transactions on Image Processing, 19(6), 1491–1503.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sejdinović, D., Vukobratović, D., Doufexi, A., Šenk, V., & Piechocki, R. J. (2009). Expanding window fountain codes for unequal error protection. IEEE Transactions on Communications, 57(9), 2510–2516.CrossRefGoogle Scholar
  19. 19.
    Vukobratović, D., Stanković, V., Sejdinović, D., Stanković, L., & Xiong, Z. (2009). Scalable video multicast using expanding window fountain codes. IEEE Transactions on Multimedia, 11(6), 1094–1104.CrossRefGoogle Scholar
  20. 20.
    Vukobratović, D., Stanković, V., Stanković, L., & Sejdinović, D. (2009). Precoded EWF codes for unequal error protection of scalable video. In Proceedings of the 5th international ICST mobile multimedia communications conference 2009, London, UK, September.Google Scholar
  21. 21.
    Stefanović, Č., Vukobratović, D., Chiti, F., Niccolai, L., Crnojević, V., & Fantacci, R. (2011). Urban infrastructure-to-vehicle traffic data dissemination using UEP rateless codes. IEEE Journal on Selected Area in Communications, 29(1), 94–102.CrossRefGoogle Scholar
  22. 22.
    Arslan, S. S., Cosman, P. C., & Milstein, L. B. (2012). Generalized unequal error protection LT codes for progressive data transmission. IEEE Transactions on Image Processing, 21(8), 3586–3597.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ahmad, S., Hamzaoui, R., & Al-Akaidi, M. (2011). Unequal error protection using fountain codes with applications to video communication. IEEE Transactions on Multimedia, 13(1), 92–101.CrossRefGoogle Scholar
  24. 24.
    Yen, K.-K., Liao, Y.-C., Chen, C.-L., Zao, J., & Chang, H.-C. (2013). Integrating non-repetitive LT encoders with modifined distribution to achieve unequal erasure protection. IEEE Transactions on Multimedia, 15(8), 2162–2175.CrossRefGoogle Scholar
  25. 25.
    Yuan, L., & An, J. (2010). Design of UEP-Raptor codes over BEC. European Transactions on Telecommunications, 21, 30–34.Google Scholar
  26. 26.
    Talari, A., & Rahnavard, N. (2012). On the intermediate symbol recovery rate of rateless codes. IEEE Transactions on Communications, 60(5), 1237–1242.CrossRefGoogle Scholar
  27. 27.
    Luby, M., Mitzenmacher, M., & Shokrollahi, A. (1998). Analysis of random processes via and-or tree evaluation. In Proceedings of the 9th annual ACM-SIAM symposium discrete algorithms (SODA), January (pp. 364–373).Google Scholar
  28. 28.
    Johnson, S. J. (2009). Iterative error correction: Turbo, low-density parity-check and repeat-accumulate codes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  29. 29.
    Li, H., & Marsland, I.D. (2008). A comparison of rateless codes at short block lengths. In IEEE international conference on communications (ICC) (pp. 4483–4488).Google Scholar
  30. 30.
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.CrossRefGoogle Scholar
  31. 31.
    Richardson, T., & Urbanke, R. (2008). Modern coding theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  32. 32.
    Hu, X.-Y., Eleftheriou, E., & Arnold, D. M. (2005). Regular and irregular progressive edge-growth tanner graphs. IEEE Transactions on Information Theory, 51(1), 386–398.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Information Science and EngineeringLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations