Advertisement

Wireless Personal Communications

, Volume 97, Issue 3, pp 3993–4013 | Cite as

Performance Analysis for a Wireless Sensor Network of Star Topology with Random Nodes Deployment

  • Cong LinEmail author
  • Lirong Cui
  • David W. Coit
  • Min Lv
Article

Abstract

A wireless sensor network is applied for detecting information, by nodes, then generates and transfers the packets to the clustering head for further transmission. In practice, due to the influence of environmental factors, traffic loads of nodes and barrier, a node may fail to detect the information which occurs within its sensing area. Thus, the redundant deployment is often conducted. There are some frequent questions need to be considered when deploying the WSN: (1) how many nodes are required for obtaining a confident coverage of the area; (2) how well does the WSN perform as time goes by, because it is an energy consumption technique; (3) when is the best opportunity to reallocate the nodes. To answer the above questions, we conduct this research. We use \(k\)-out-of-\(n\) model to calculate the \(k\)-coverage probability, which determines the minimal number of nodes that are needed to be deployed in the monitored area. We formulate the node availability and WSN availability with the assumption that the information arrival is a Poisson process. By applying the age-based replacement model, we obtain the optimal reallocation interval with lowest long run expected cost rate.

Keywords

Wireless sensor network k-coverage Availability Age-based replacement policy Finite Markov chain imbedding approach 

Notes

Acknowledgements

This work is supported by NSF of China under Grant 71371031 and by China Scholarship Council under Grant 201406030097.

References

  1. 1.
    AboElFotoh, H. M. F., ElMallah, E. S., & Hassanein, H. S. (2006). On the reliability of wireless sensor networks. In: 2006 IEEE International Conference on Communications (Vol 1–12, pp. 3455–3460). New York: IEEE.Google Scholar
  2. 2.
    Adulyasas, A., Sun, Z. L., & Wang, N. (2015). Connected coverage optimization for sensor scheduling in wireless sensor networks. IEEE Sensors Journal, 15, 3877–3892.CrossRefGoogle Scholar
  3. 3.
    Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38, 393–422.CrossRefGoogle Scholar
  4. 4.
    Akyildiz, I. F., Wang, X. D., & Wang, W. L. (2005). Wireless mesh networks: A survey. Computer Networks-The International Journal of Computer and Telecommunications Networking, 47, 445–487.zbMATHGoogle Scholar
  5. 5.
    Azari, A., Harsini, J. S., & Lahouti, F. (2015). Performance analysis of ad-hoc routing in heterogeneous clustered multi-hop wireless networks. Computer Networks, 80, 143–154.CrossRefGoogle Scholar
  6. 6.
    Birjandi, P. A., Kulik, L., & Tanin, E. (2013). K-Coverage in regular deterministic sensor deployments. New York: IEEE.Google Scholar
  7. 7.
    Bredin, J. L., Demaine, E. D., Hajiaghayi, M. T., & Rus, D. (2010). Deploying sensor networks with guaranteed fault tolerance. IEEE-Acm Transactions on Networking, 18, 216–228.CrossRefGoogle Scholar
  8. 8.
    Cai, J., Song, X., Wang, J., & Gu, M. (2014). Reliability analysis for a data flow in event-driven wireless sensor networks. Wireless Personal Communications, 78, 151–169.CrossRefGoogle Scholar
  9. 9.
    Chang, G. J., Cui, L., & Hwang, F. K. (1999). Reliabilities for (n, f, k) systems. Statistics & Probability Letters, 43, 237–242.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cheng, B.-C., Yeh, H.-H., & Hsu, P.-H. (2011). Schedulability analysis for hard network lifetime wireless sensor networks with high energy first clustering. IEEE Transactions on Reliability, 60, 675–688.CrossRefGoogle Scholar
  11. 11.
    Coit, D. W., Chatwattanasiri, N., Wattanapongsakorn, N., & Konak, A. (2015). Dynamic k-out-of-n system reliability with component partnership. Reliability Engineering & System Safety, 138, 82–92.CrossRefGoogle Scholar
  12. 12.
    Cui, L. R., Lin, C., & Du, S. J. (2015). m-consecutive-k, l-Out-of-n systems. IEEE Transactions on Reliability, 64, 386–393.CrossRefGoogle Scholar
  13. 13.
    Fontanelli, D., & Petri, D. (2009). An algorithm for WSN clock synchronization: Uncertainty and convergence rate trade off. New York: IEEE.Google Scholar
  14. 14.
    Gupta, H. P., Rao, S. V., & Venkatesh, T. (2013). Analysis of the redundancy in coverage of a heterogeneous wireless sensor network. In: 2013 IEEE International Conference on Communications (ICC) (pp. 1904–1909).Google Scholar
  15. 15.
    He, T., Krishnamurthy, S., Luo, L., Yan, T., Gu, L., Stoleru, R., et al. (2006). VigilNet: An integrated sensor network system for energy-efficient surveillance. ACM Transactions on Sensor Networks (TOSN), 2, 1–38.CrossRefGoogle Scholar
  16. 16.
    Ho, D. T., & Shimamoto, S. (2011). Highly reliable communication protocol for WSN–UAV system employing TDMA and PFS scheme. In: 2011 IEEE Globecom Workshops (Gc Wkshps) (pp. 1320–1324).Google Scholar
  17. 17.
    Michelusi, N., & Zorzi, M. (2015). Optimal adaptive random multiaccess in energy harvesting wireless sensor networks. IEEE Transactions on Communications, 63, 1355–1372.Google Scholar
  18. 18.
    Sagar, A. K., & Lobiyal, D. K. (2015). Probabilistic intrusion detection in randomly deployed wireless sensor networks. Wireless Personal Communications, 84, 1017–1037.CrossRefGoogle Scholar
  19. 19.
    Sangwan, A., & Singh, R. (2015). Survey on coverage problems in wireless sensor networks. Wireless Personal Communications, 80, 1475–1500.CrossRefGoogle Scholar
  20. 20.
    Selavo, L., Wood, A., Cao, Q., Sookoor, T., Liu, H., Srinivasan, A., et al. (2007). Luster: Wireless sensor network for environmental research. In: Proceedings of the 5th international conference on Embedded networked sensor systems (pp. 103–116).Google Scholar
  21. 21.
    Shazly, M. H., Elmallah, E. S., & AboElFotoh, H. M. F. (2010). A three-state node reliability model for sensor networks. In: 2010 IEEE Global Telecommunications Conference Globecom. Miami: IEEE.Google Scholar
  22. 22.
    Stankovic, J. A., Wood, A. D., & He T. (2011). Realistic applications for wireless sensor networks. In: Theoretical Aspects of Distributed Computing in Sensor Networks (pp. 835–863). Springer.Google Scholar
  23. 23.
    Sun, K., Ning, P., & Wang, C. (2005). Fault-tolerant cluster-wise clock synchronization for wireless sensor networks. IEEE Transactions on Dependable and Secure Computing, 2, 177–189.CrossRefGoogle Scholar
  24. 24.
    Vasseur, J. P., Bertrand, P., Aboussouan, B., Gnoske, E., Pister, K., Culler, D., Acra, R., & Huotari, A. (2010). A survey of several low power Link layers for IP smart objects [white paper] # 6. In: International Protocol for Smart Objects (IPSO) Alliance.Google Scholar
  25. 25.
    Vicaire, P., He, T., Cao, Q., Yan, T., Zhou, G., Gu, L., et al. (2009). Achieving long-term surveillance in vigilnet. ACM Transactions on Sensor Networks (TOSN), 5, 9.CrossRefGoogle Scholar
  26. 26.
    Wang, J.-B., Wang, J.-Y., Chen, M., Zhao, X. B., Si, S.-B., Cui, L. R., et al. (2013). Reliability analysis for a data flow in event-driven wireless sensor networks using a multiple sending transmission approach. EURASIP Journal on Wireless Communications and Networking, 2013, 277. doi: 10.1186/1687-1499-2013-277.CrossRefGoogle Scholar
  27. 27.
    Wang, N., & Shen, X. L. (2009). Research on WSN nodes location technology in coal mine. Los Alamitos: IEEE Computer Society.Google Scholar
  28. 28.
    Wood, A. D., Stankovic, J., Virone, G., Selavo, L., He, Z., Cao, Q., et al. (2008). Context-aware wireless sensor networks for assisted living and residential monitoring. IEEE Network, 22, 26–33.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.AVIC China Aero-Polytechnology EstablishmentBeijingChina
  2. 2.School of Management and EconomicsBeijing Institute of TechnologyBeijingChina
  3. 3.Department of Industrial and Systems EngineeringRutgers UniversityNew BrunswickUSA
  4. 4.China Telecommunication Technology LabsChina Academy of Information and Communications TechnologyBeijingChina

Personalised recommendations