Advertisement

Wireless Personal Communications

, Volume 97, Issue 3, pp 3921–3941 | Cite as

A Survey on Dynamic Spectrum Access for LTE-Advanced

  • Abdullah Omar ArafatEmail author
  • Akram Al-Hourani
  • Nazmus S. Nafi
  • Mark A. Gregory
Article
  • 229 Downloads

Abstract

Increasing utilization of LTE-Advanced (LTE-A) to meet the rapid growth in wireless bandwidth demand is an important focus for current research. Dynamic spectrum access (DSA) is a promising approach that can be utilized to improve bandwidth utilization in LTE-A systems and networks. The application of DSA is not limited to commercial use but can also be applied to provide access to other systems including public safety communication systems and device to device communications. This paper provides a general overview of DSA and a review of the recent research into the use of DSA to improve bandwidth utilization in LTE-A networks. DSA is a flexible technique that is being applied to different network technologies including cognitive radio, mobile cellular femtocells and wireless relay.

Keywords

LTE-Advanced Dynamic spectrum access Cognitive radio Survey Public safety communication 

Supplementary material

11277_2017_4707_MOESM1_ESM.png (24 kb)
Supplementary material 1 (png 23 KB)

References

  1. 1.
    Chvez-Santiago, R., Szydeko, M., Kliks, A., Foukalas, F., Haddad, Y., Nolan, K. E., et al. (2015). 5G: The convergence of wireless communications. Wireless Personal Communications, 83(3), 1617–1642.Google Scholar
  2. 2.
    Shannon, E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Budiarjo, I., Lakshmanan, M. K., & Nikookar, H. (2008). Cognitive radio dynamic access techniques. Wireless Personal Communications, 45(3), 293–324.Google Scholar
  4. 4.
    Mitola, J., & Maguire, G. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.Google Scholar
  5. 5.
    Sithamparanathan, K., & Giorgetti, A. (2012). Cognitive radio techniques: Spectrum sensing, interference mitigation, and localization. Norwood: Artech House.Google Scholar
  6. 6.
    Onur, E., Durmus, Y., Hawas, M. G., de Groot, S. M. H., & Niemegeers, I. G. M. M. (2011). Collaborative and cognitive network platforms: Vision and research challenges. Wireless Personal Communications, 58(1), 71–93.Google Scholar
  7. 7.
    Erik Dahlman, S. P., & Skold, J. (2011). 4G LTE/LTE-advanced for mobile broadband, Chapter 7. Academic Press.Google Scholar
  8. 8.
    Akyildiz, F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Network, 50(13), 2127–2159.zbMATHGoogle Scholar
  9. 9.
    Pursley, M. B., & Royster, T. C. (2007). A protocol suite for cognitive radios in dynamic spectrum access networks. In Cognitive wireless communication networks (pp. 139–163). Berlin: Springer.Google Scholar
  10. 10.
    Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79–89.Google Scholar
  11. 11.
    Hossain, E., Niyato, D., & Han, Z. (2009). Dynamic spectrum access and management in cognitive radio networks. Cambridge: Cambridge University Press.Google Scholar
  12. 12.
    Buddhikot, M., Kolodzy, P., Miller, S., Ryan, K., & Evans, J. (2005). Dimsumnet: New directions in wireless networking using coordinated dynamic spectrum. In Sixth IEEE international symposium on a world of wireless mobile and multimedia networks, WoWMoM, pp. 78–85.Google Scholar
  13. 13.
    Brik, V., Rozner, E., Banerjee, S., & Bahl, P. (2005). DSAP: A protocol for coordinated spectrum access. In First IEEE international symposium on new frontiers in dynamic spectrum access networks, pp. 611–614.Google Scholar
  14. 14.
    Cao, L., & Zheng, H. (2005). Distributed spectrum allocation via local bargaining. In Second annual IEEE communications society conference on sensor and ad hoc communications and networks, pp. 475–486.Google Scholar
  15. 15.
    Huang, J., Berry, R., & Honig, M. (2005). Spectrum sharing with distributed interference compensation. In First IEEE international symposium on new frontiers in dynamic spectrum access networks, pp. 88–93.Google Scholar
  16. 16.
    Huang, J., Zhou, H., Chen, Y., Chen, B., & Kong, R. (2014). Distributed and centralized schemes for channel sensing order setting in multi-user cognitive radio networks. Wireless Personal Communications, 75(2), 1391–1410.Google Scholar
  17. 17.
    Zheng, H., & Cao, L. (2005). Device-centric spectrum management. In First IEEE international symposium on new frontiers in dynamic spectrum access networks, pp. 56–65.Google Scholar
  18. 18.
    Papadimitratos, P., Sankaranarayanan, S., & Mishra, A. (2005). A bandwidth sharing approach to improve licensed spectrum utilization. IEEE Communications Magazine, 43(12), supl.10–supl.14.Google Scholar
  19. 19.
    Zhao, Q., Tong, L., & Swami, A. (2005). Decentralized cognitive MAC for dynamic spectrum access. In First IEEE international symposium on new frontiers in dynamic spectrum access networks, pp. 224–232.Google Scholar
  20. 20.
    Stelter, A., Szulakiewicz, P., Kotrys, R., Krasicki, M., & Remlein, P. (2014). Dynamic 20/40/60/80 MHz channel access for 80 MHz 802.11 ac. Wireless Personal Communications, 79(1), 235–248.Google Scholar
  21. 21.
    Tragos, E. Z., Zeadally, S., Fragkiadakis, A., & Siris, V. (2013). Spectrum assignment in cognitive radio networks: A comprehensive survey. IEEE Communications Surveys Tutorials., 15(3), 1108–1135.Google Scholar
  22. 22.
    Benmammar, B., & Amraoui, A. (2013). Dynamic spectrum access, radio resource allocation and dynamic spectrum access (pp. 53–66). Hoboken: Wiley.Google Scholar
  23. 23.
    Benmammar, B., Amraoui, A., & Krief, F. (2013). A survey on dynamic spectrum access techniques in cognitive radio networks. International Journal of Communication Networks & Information Security, 5(2), 68.Google Scholar
  24. 24.
    Wang, X., Li, Z., Xu, P., Xu, Y., Gao, X., & Chen, H.-H. (2010). Spectrum sharing in cognitive radio networks: An auction-based approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40(3), 587–596.Google Scholar
  25. 25.
    Parzy, M., & Bogucka, H. (2011). Non-identical objects auction for spectrum sharing in TV white spaces—The perspective of service providers as secondary users. In IEEE symposium on new frontiers in dynamic spectrum access networks (DySPAN), pp. 389–398.Google Scholar
  26. 26.
    Bogucka, H., Parzy, M., Marques, P., Mwangoka, J., & Forde, T. (2012). Secondary spectrum trading in TV white spaces. IEEE Communications Magazine, 50(11), 121–129.Google Scholar
  27. 27.
    Akkarajitsakul, K., Hossain, E., & Niyato, D. (2011). Distributed resource allocation in wireless networks under uncertainty and application of Bayesian game. IEEE Communications Magazine, 49(8), 120–127.Google Scholar
  28. 28.
    Kim, S. (2013). A repeated Bayesian auction game for cognitive radio spectrum sharing scheme. Computer Communications, 36(8), 939–946.Google Scholar
  29. 29.
    Mohammadian, H., & Abolhassani, B. (2010). Auction-based spectrum sharing for multiple primary and secondary users in cognitive radio networks. In IEEE Sarnoff Symposium, pp. 1–6.Google Scholar
  30. 30.
    Xu, W., & Wang, J. (2010). Double auction based spectrum sharing for wireless operators. In IEEE 21st international symposium on personal indoor and mobile radio communications (PIMRC), pp. 2650–2654.Google Scholar
  31. 31.
    Wu, G., Ren, P., Du, Q., & Zhang, C. (2013). A DOF-based dynamic spectrum auction algorithm in cognitive femtocell. Concurrency and Computation: Practice and Experience, 25(9), 1126–1143.Google Scholar
  32. 32.
    Ji, Z., & Liu, K. (2007). Cognitive radios for dynamic spectrum access—dynamic spectrum sharing: A game theoretical overview. IEEE Communications Magazine, 45(5), 88–94.Google Scholar
  33. 33.
    Myerson, R. B. (1991). Game theory: Analysis of conflict. Cambridge: Harvard University.zbMATHGoogle Scholar
  34. 34.
    Maskery, M., Krishnamurthy, V., & Zhao, Q. (2009). Decentralized dynamic spectrum access for cognitive radios: Cooperative design of a non-cooperative game. IEEE Transactions on Communications, 57(2), 459–469.Google Scholar
  35. 35.
    Huang, J., & Krishnamurthy, V. (2011). Cognitive base stations in LTE/3GPP femtocells: A correlated equilibrium game-theoretic approach. IEEE Transactions on Communications, 59(12), 3485–3493.Google Scholar
  36. 36.
    Gharehshiran, O., Attar, A., & Krishnamurthy, V. (2013). Collaborative sub-channel allocation in cognitive LTE femto-cells: A cooperative game-theoretic approach. IEEE Transactions on Communications, 61(1), 325–334.Google Scholar
  37. 37.
    Niyato, D., Hossain, E., & Han, Z. (2009). Dynamics of multiple-seller and multiple-buyer spectrum trading in cognitive radio networks: A game-theoretic modeling approach. IEEE Transactions on Mobile Computing, 8(8), 1009–1022.Google Scholar
  38. 38.
    Saad, W., Han, Z., Zheng, R., Hjorungnes, A., Basar, T., & Poor, H. (2012). Coalitional games in partition form for joint spectrum sensing and access in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 6(2), 195–209.Google Scholar
  39. 39.
    Akbar, I. A., & Tranter, W. (2007). Dynamic spectrum allocation in cognitive radio using hidden Markov models: Poisson distributed case. In IEEE SoutheastCon, pp. 196–201.Google Scholar
  40. 40.
    Nguyeny, T., Mark, B., & Ephraim, Y. (2011). Hidden Markov process based dynamic spectrum access for cognitive radio. In 45th annual conference on information sciences and systems (CISS), pp. 1–6.Google Scholar
  41. 41.
    Bkassiny, M., & Jayaweera, S. K. (2010). Optimal channel and power allocation for secondary users in cooperative cognitive radio networks. In Mobile lightweight wireless systems. Berlin: Springer, pp. 180–191.Google Scholar
  42. 42.
    Salameh, H., Krunz, M., & Younis, O. (2008). Distance- and traffic-aware channel assignment in cognitive radio networks. In 5th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, pp. 10–18.Google Scholar
  43. 43.
    Sandalidis, H. G., & Stavroulakis, P. (2002). Heuristics for solving fixed-channel assignment problems. Handbook of wireless networks and mobile computing, p. 51.Google Scholar
  44. 44.
    Silver, A. (2004). An overview of heuristic solution methods. Journal of the Operational Research Society, 55(9), 936–956.zbMATHGoogle Scholar
  45. 45.
    Biernacki, A., & Tutschku, K. (2014). Comparative performance study of LTE downlink schedulers. Wireless Personal Communications, 74(2), 585–599.Google Scholar
  46. 46.
    Osa, Herranz, C., Monserrat, J. F., & Gelabert, X. (2012). Implementing opportunistic spectrum access in LTE-advanced. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1–17.Google Scholar
  47. 47.
    Deaton, J., Irwin, R., DaSilva, L. (2011). The effects of a dynamic spectrum access overlay in LTE-advanced networks. In IEEE symposium on new frontiers in dynamic spectrum access networks (DySPAN), pp. 488–497.Google Scholar
  48. 48.
    Deaton, J., Benonis, M., DaSilva, L., & Irwin, R. (2012). Supporting dynamic spectrum access in heterogeneous LTE+ networks. In IEEE international symposium on dynamic spectrum access networks (DYSPAN), pp. 305–316.Google Scholar
  49. 49.
    Zhao, X., Guo, Z., & Guo, Q. (2010). A cognitive based spectrum sharing scheme for LTE advanced systems. In International congress on ultra modern telecommunications and control systems and workshops (ICUMT), pp. 965–969.Google Scholar
  50. 50.
    Beluri, M., Bala, E., Dai, Y., Di Girolamo, R., Freda, M., Gourneau, J., et al. (2012). Mechanisms for LTE coexistence in TV white space. In IEEE international symposium on dynamic spectrum access networks (DYSPAN), pp. 317–326.Google Scholar
  51. 51.
    Thein, C., Fuhrwerk, M., Peissig, J., & Schellmann, M. (2012). Opportunistic spectrum access in TVWS: A comparative coexistence study for LTE. In IEEE international symposium on dynamic spectrum access networks (DYSPAN), pp. 289–298.Google Scholar
  52. 52.
    Xing, Y., Mathur, C., Haleem, M., Chandramouli, R., & Subbalakshmi, K. P. (2007). Dynamic spectrum access with QoS and interference temperature constraints. IEEE Transactions on Mobile Computing, 6(4), 423–433.Google Scholar
  53. 53.
    Dwarakanath, R., Naranjo, J., & Ravanshid, A. (2013) Modeling of interference maps for licensed shared access in LTE-advanced networks supporting carrier aggregation. In FIP Wireless Days (WD), pp. 16.Google Scholar
  54. 54.
    Naranjo, J. D., Bauch, G., Saleh, A. B., Viering, I., & Halfmann, R. (2013). A dynamic spectrum access scheme for an LTE-advanced HetNet with carrier aggregation. In Proceedings of 9th international ITG conference on systems, communication and coding (SCC), pp. 1–6.Google Scholar
  55. 55.
    Cai, T., Koudouridis, G., Johansson, J., van de Beek, J., Nasreddine, J., Petrova, M., et al. (2010). An implementation of cognitive resource management on LTE platform. In IEEE 21st international symposium on personal indoor and mobile radio communications (PIMRC), pp. 2663–2668.Google Scholar
  56. 56.
    Lien, S.-Y., & Chen, K.-C. (2011). Statistical traffic control for cognitive radio empowered LTE-advanced with network MIMO. In IEEE conference on computer communications workshops (INFOCOM WKSHPS), pp. 80–84.Google Scholar
  57. 57.
    Kouassi, B., Deneire, L., Zayen, B., Knopp, R., Kaltenberger, F., Negro, F., et al. (2013). Design and implementation of spatial interweave LTE-TDD cognitive radio communication on an experimental platform. IEEE Wireless Communications, 20(2), 60–67.Google Scholar
  58. 58.
    Herranz, C., Osa, V., Monserrat, J., Calabuig, D., Cardona, N., & Gelabert, X. (2012). Cognitive radio enabling opportunistic spectrum access in LTE-advanced femtocells. In 2012 IEEE international conference on communications (ICC), pp. 5593–5597.Google Scholar
  59. 59.
    Gur, G., Bayhan, S., & Alagoz, F. (2010). Cognitive femtocell networks: An overlay architecture for localized dynamic spectrum access [Dynamic Spectrum Management]. IEEE Wireless Communications, 17(4), 62–70.Google Scholar
  60. 60.
    IEEE Standard for local and metropolitan area networks—Part 21: Media Independent Handover Services Amendment 2: Extension for supporting handovers with downlink only technologies. IEEE Std 802.21b-2012 (Amendment to IEEE Std 802.21-2008 as amended by 802.21a-2012), pp. 1–40, May 2012.Google Scholar
  61. 61.
    IEEE Draft Standard for local and metropolitan area networks—Part 21: Media Independent Handover Services—Amendment 3: Optimized single radio handovers. IEEE P802.21c/D6, August 2013, pp. 1–70, December 2013.Google Scholar
  62. 62.
    IEEE Draft Standard for Local and metropolitan area networks—Part 21: Media Independent Handover Services—Amendment 3: Optimized single radio handovers. IEEE P802.21c/D7, December 2013, pp. 1–83.Google Scholar
  63. 63.
    Peng, F., Gao, Y., Chen, Y., Chai, K. K., & Cuthbert, L. (2011). Using TV white space for interference mitigation in LTE femtocell networks. In IET international conference on communication technology and application (ICCTA), pp. 5–9.Google Scholar
  64. 64.
    Peng, F., Wang, N., Gao, Y., Cuthbert, L., & Zhang, X. (2013). Geo-location database based TV white space for interference mitigation in LTE femtocell networks. In IEEE 14th international symposium and workshops on a world of wireless, mobile and multimedia networks (WoWMoM), pp. 1–6.Google Scholar
  65. 65.
    Sangtarash, S., Sadeghi, H., Hassan, W., King, H., & Rahman, T. (2012). Using cognitive radio interference mitigation technique to enhance coexistence and sharing between DVB-T and LTE system. In Future network mobile summit (FutureNetw), pp. 1–9.Google Scholar
  66. 66.
    Bhat, P., Nagata, S., Campoy, L., Berberana, I., Derham, T., Liu, G., et al. (2012). LTE-advanced: An operator perspective. IEEE Communications Magazine, 50(2), 104–114.Google Scholar
  67. 67.
    3GPP, Technical Specification Group Radio Access Network, Further advancements for E-UTRA physical layer aspects (Release 9). 3rd Generation Partnership Project (3GPP), TR 35.814, 2010. http://www.3gpp.org/ftp/Specs/html-info/36814.htm.
  68. 68.
    Baker, M. (2012). From LTE-advanced to the future. IEEE Communications Magazine, 50(2), 116–120.Google Scholar
  69. 69.
    Hoymann, C., Chen, W., Montojo, J., Golitschek, A., Koutsimanis, C., & Shen, X. (2012). Relaying operation in 3GPP LTE: Challenges and solutions. IEEE Communications Magazine, 50(2), 156–162.Google Scholar
  70. 70.
    Alizadeh, A., Sadough, S. M.-S., & Ghorashi, S. A. (2011). Relay selection and resource allocation in LTE-advanced cognitive relay networks. International Journal on Communications Antenna and Propagation, 1(4), 303–310.Google Scholar
  71. 71.
    Simeone, O., Stanojev, I., Savazzi, S., Bar-Ness, Y., Spagnolini, U., & Pickholtz, R. (2008). Spectrum leasing to cooperating secondary ad hoc networks. IEEE Journal on Selected Areas in Communications, 26(1), 203–213.Google Scholar
  72. 72.
    Han, Y., Pandharipande, A., & Ting, S. H. (2008). Cooperative spectrum sharing via controlled amplify-and-forward relaying. In IEEE 19th international symposium on personal, indoor and mobile radio communications, PIMRC, pp. 1–5.Google Scholar
  73. 73.
    Han, Y., Pandharipande, A., & Ting, S. H. (2009). Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Transactions on Wireless Communications, 8(10), 4945–4950.Google Scholar
  74. 74.
    Han, Y., Ting, S. H., & Pandharipande, A. (2010). Cooperative spectrum sharing protocol with secondary user selection. IEEE Transactions on Wireless Communications, 9(9), 2914–2923.Google Scholar
  75. 75.
    Gong, C., Yue, G., & Wang, X. (2011). A transmission protocol for a cognitive bidirectional shared relay system. IEEE Journal of Selected Topics in Signal Processing, 5(1), 160–170.Google Scholar
  76. 76.
    Li, Q., Ting, S. H., Pandharipande, A., & Han, Y. (2011). Cognitive spectrum sharing with two-way relaying systems. IEEE Transactions on Vehicular Technology, 60(3), 1233–1240.Google Scholar
  77. 77.
    Duy, T. T., & Kong, H.-Y. (2013). Performance analysis of two-way hybrid decode-and-amplify relaying scheme with relay selection for secondary spectrum access. Wireless Personal Communications, 69(2), 857–878.Google Scholar
  78. 78.
    Nadkar, T., Thumar, V., Shenoy, G., Mehta, A., Desai, U., & Merchant, S. (2011). A cross-layer framework for symbiotic relaying in cognitive radio networks. In IEEE symposium on new frontiers in dynamic spectrum access networks (DySPAN), pp. 498–509.Google Scholar
  79. 79.
    Bayat, S., Louie, R. H., Vucetic, B., & Li, Y. (2013). Dynamic decentralised algorithms for cognitive radio relay networks with multiple primary and secondary users utilizing matching theory. Transactions on Emerging Telecommunications Technologies, 24(5), 486–502.Google Scholar
  80. 80.
    Lu, W. D., Gong, Y., Ting, S. H., Wu, X. L., & Zhang, N.-T. (2012). Cooperative OFDM relaying for opportunistic spectrum sharing: Protocol design and resource allocation. IEEE Transactions on Wireless Communications, 11(6), 2126–2135.Google Scholar
  81. 81.
    Han, Y., Ting, S. H., & Pandharipande, A. (2012). Cooperative spectrum sharing protocol with selective relaying system. IEEE Transactions on Communications, 60(1), 62–67.Google Scholar
  82. 82.
    Guimaraes, F., da Costa, D., Tsiftsis, T., Cavalcante, C., & Karagiannidis, G. (2014). Multiuser and multirelay cognitive radio networks under spectrum-sharing constraints. IEEE Transactions on Vehicular Technology, 63(1), 433–439.Google Scholar
  83. 83.
    Krishna, R., Cumanan, K., Xiong, Z., & Lambotharan, S. (2009). Cooperative relays for an underlay cognitive radio network. In International conference on wireless communications signal processing, pp. 1–4.Google Scholar
  84. 84.
    Jia, J., Zhang, J., & Zhang, Q. (2009). Cooperative relay for cognitive radio networks. In IEEE INFOCOM, pp. 2304–2312.Google Scholar
  85. 85.
    Simeone, O., Stanojev, I., Savazzi, S., Bar-Ness, Y., Spagnolini, U., & Pickholtz, R. (2008). Spectrum leasing to cooperating secondary ad hoc networks. IEEE Journal on Selected Areas in Communications, 26(1), 203–213.Google Scholar
  86. 86.
    Zhang, J., & Zhang, Q. (2009). Stackelberg game for utility-based cooperative cognitive radio networks. In Proceedings of the tenth ACM international symposium on Mobile ad hoc networking and computing (pp. 23–32). ACM.Google Scholar
  87. 87.
    Krikidis, I., Laneman, J. N., Thompson, J. S., & McLaughlin, S. (2009). Protocol design and throughput analysis for multi-user cognitive cooperative systems. IEEE Transactions on Wireless Communications, 8(9), 4740–4751.Google Scholar
  88. 88.
    Rong, B., Krikidis, I., & Ephremides, A. (2010). Network-level cooperation with enhancements based on the physical layer. In 2010 IEEE information theory workshop (ITW), pp. 1–5.Google Scholar
  89. 89.
    Urgaonkar, R., & Neely, M. J. (2012). Opportunistic cooperation in cognitive femtocell networks. IEEE Journal on Selected Areas in Communications, 30(3), 607–616.Google Scholar
  90. 90.
    Naranjo, J., Viering, I., & Friederichs, K.-J. (2012). A cognitive radio based dynamic spectrum access scheme for LTE heterogeneous networks. In Wireless telecommunications symposium (WTS), pp. 1–7.Google Scholar
  91. 91.
    Devroye, N., Mitran, P., & Tarokh, V. (2006). Limits on communications in a cognitive radio channel. IEEE Communications Magazine, 44(6), 44–49.zbMATHGoogle Scholar
  92. 92.
    Akram Al-Hourani, S. K. (2013). Temporary cognitive femtocell network for public safety LTE. In The first international IEEE workshop on emerging technologies and trends for public safety communications.Google Scholar
  93. 93.
    Kliks, A. (2015). Application of the cognitive radio concept for M2M communications: Practical considerations. Wireless Personal Communications, 83(1), 117–133.Google Scholar
  94. 94.
    EU-FP7 ICT IP Project ABSOLUTE. (2013). http://www.absolute-project.eu/reports/publications.
  95. 95.
    Phunchongharn, P., Hossain, E., & Kim, D. (2013). Resource allocation for device-to-device communications underlaying LTE-advanced networks. IEEE Wireless Communications, 20(4), 91–100.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringRMIT UniversityMelbourneAustralia

Personalised recommendations