Advertisement

Wireless Personal Communications

, Volume 97, Issue 2, pp 1877–1888 | Cite as

Visual Detection of Events of Interest from Urban Activity

  • Stefanos Astaras
  • Aristodemos Pnevmatikakis
  • Zheng-Hua Tan
Article

Abstract

Learning patterns of human-related activities in outdoor urban spaces, and utilising them to detect activity outliers that represent events of interest, can have important applications in automatic news generation and security. This paper addresses the problem of detecting both expected and unexpected activities in the visual domain. We use a foreground extraction method to mark people and vehicles in videos from city surveillance cameras as foreground blobs. The extracted foreground blobs are then converted to an activity measure to indicate how crowded the scene is at any given video frame. The activity measure, collected over the period of a day, is used to build an activity feature vector describing that day. Day activity vectors are then clustered into different patterns of activities. Common patterns in the data are not considered important as they represent the everyday norm of urban life in that location. Outliers, on the other hand, are detected and reported as events of interest.

Keywords

Patterns of activity Clustering Foreground segmentation 

References

  1. 1.
    Bardas, G., Astaras, S., Diamantas, S., & Pnevmatikakis, A. (2017). 3d tracking and classification system using a monocular camera. Wireless Personal Communications, 92(1), 63–85. doi: 10.1007/s11277-016-3839-y.CrossRefGoogle Scholar
  2. 2.
    Barnich, O., & Droogenbroeck, M. V. (2011). Vibe: A universal background subtraction algorithm for video sequences. IEEE Transactions on Image Processing, 20(6), 1709–1724. doi: 10.1109/TIP.2010.2101613.CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bloisi, D., & Iocchi, L. (2012). Independent multimodal background subtraction. In Computational Modelling of Objects Represented in Images-Fundamentals, Methods and Applications III, Third International Symposium, CompIMAGE 2012, Rome, Italy, September 5–7, 2012 (pp. 39–44). doi: 10.1201/b12753-8.
  4. 4.
    Elgammal, A., Duraiswami, R., Harwood, D., & Davis, L. S. (2002). Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceeding of the IEEE, 90, 1151–1163.CrossRefGoogle Scholar
  5. 5.
    Godbehere, A. B., Matsukawa, A., & Goldberg, K. Y. (2012). Visual tracking of human visitors under variable-lighting conditions for a responsive audio art installation. In American Control Conference, ACC 2012, Montreal, QC, Canada, June 27–29, 2012 (pp. 4305–4312).Google Scholar
  6. 6.
    Goya, Y., Chateau, T., Malaterre, L., & Trassoudaine, L. (2006). Vehicle trajectories evaluation by static video sensors. In 2006 IEEE Intelligent Transportation Systems Conference (pp. 864–869).Google Scholar
  7. 7.
    Haines, T. S. F., & Xiang, T. (2014). Background subtraction with Dirichletprocess mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(4), 670–683.CrossRefGoogle Scholar
  8. 8.
    Heikkilä, M., & Pietikäinen, M. (2006). A texture-based method for modeling the background and detecting moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 657–662. doi: 10.1109/TPAMI.2006.68.CrossRefGoogle Scholar
  9. 9.
    KaewTraKulPong, P., & Bowden, R. (2002). An improved adaptive background mixture model for real-time tracking with shadow detection. In Video-Based Surveillance Systems, chapter 11 (pp. 135–144). US: Springer.Google Scholar
  10. 10.
    Katsarakis, N., Pnevmatikakis, A., Tan, Z. H., & Prasad, R. (2016). Improved Gaussian mixture models for adaptive foreground segmentation. Wireless Personal Communications, 87(3), 629–643.CrossRefGoogle Scholar
  11. 11.
    Maddalena, L., & Petrosino, A. (2008). A self-organizing approach to background subtraction for visual surveillance applications. IEEE Transactions on Image Processing, 17(7), 1168–1177. doi: 10.1109/TIP.2008.924285.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Maddalena, L., & Petrosino, A. (2010). A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection. Neural Computing and Applications, 19(2), 179–186. doi: 10.1007/s00521-009-0285-8.CrossRefGoogle Scholar
  13. 13.
    Noh, S., & Jeon, M. (2013). Computer Vision—ACCV 2012: 11th Asian Conference on Computer Vision, Daejeon, Korea, November 5–9, 2012, Revised Selected Papers, Part III, chap. A New Framework for Background Subtraction Using Multiple Cues (pp. 493–506). Berlin: Springer.Google Scholar
  14. 14.
    Powers, D. M. W. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. International Journal of Machine Learning Technology, 2(1), 37–63.MathSciNetGoogle Scholar
  15. 15.
    Sobral, A. (2013). BGSLibrary: An OpenCV C++ Background Subtraction Library. In IX Workshop de Viso Computacional (WVC’2013). Rio de Janeiro, Brazil.Google Scholar
  16. 16.
    Stauffer, C., & Grimson, W. E. L. (1999). Adaptive background mixture models for real-time tracking. In 1999 Conference on Computer Vision and Pattern Recognition (CVPR ’99), 23–25 June 1999, Ft. Collins, CO, USA(pp. 2246–2252). doi: 10.1109/CVPR.1999.784637.
  17. 17.
    St-Charles, P., & Bilodeau, G. (2014). Improving background subtraction using local binary similarity patterns. In IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, CO, USA, March 24–26, 2014 (pp. 509–515).Google Scholar
  18. 18.
    St-Charles, P., Bilodeau, G., & Bergevin, R. (2014). Flexible background subtraction with self-balanced local sensitivity. In IEEE Conference on Computer Vision and Pattern Recognition , CVPR Workshops 2014, Columbus, OH, USA, June 23–28, 2014 (pp. 414–419).Google Scholar
  19. 19.
    Zivkovic, Z. (2004). Improved adaptive Gaussian mixture model for background subtraction. In 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, August 23–26, 2004 (pp. 28–31). doi: 10.1109/ICPR.2004.1333992.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Multimodal Signal AnalyticsAthens Information TechnologyMarousi, AthensGreece
  2. 2.Department of Electronic SystemsAalborg UniversityAalborgDenmark

Personalised recommendations