A Survey of IoT Key Enabling and Future Technologies: 5G, Mobile IoT, Sematic Web and Applications

  • Sotirios K. Goudos
  • Panagiotis I. Dallas
  • Stella Chatziefthymiou
  • Sofoklis Kyriazakos
Article
  • 151 Downloads

Abstract

The Internet of Things (IoT) is the communications paradigm that can provide the potential of ultimate communication. The IoT paradigm describes communication not only human to human (H2H) but also machine to machine (M2M) without the need of human interference. In this paper, we examine, review and present the current IoT technologies starting from the physical layer to the application and data layer. Additionally, we focus on future IoT key enabling technologies like the new fifth generation (5G) networks and Semantic Web. Finally, we present main IoT application domains like smart cities, transportation, logistics, and healthcare.

Keywords

Internet of Things 5G Semantic Web LTE Smart City 

References

  1. 1.
    3GPP. (2016). 3GPP roadmap and nb-iot time relation.Google Scholar
  2. 2.
    Abdulhadi, A. E., & Abhari, R. (2011). Dual printed meander monopole antennas for passive UHF RFID tags. In 2011 IEEE international symposium on antennas and propagation (APSURSI) (pp. 988–991).Google Scholar
  3. 3.
    Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5g wireless networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 18(3), 1617–1655.CrossRefGoogle Scholar
  4. 4.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.CrossRefGoogle Scholar
  5. 5.
    Alarco, J., Deleruyelle, T., Pannier, P., & Egels, M. (2010). A new spiral antenna for passive UHF RFID tag on different substrates. In 2010 Proceedings of the fourth European conference on antennas and propagation (EuCAP) (pp. 1–4).Google Scholar
  6. 6.
    Alhawari, A. R. H., Ismail, A., Jalal, A. S. A., Raja Abdullah, R. S. A., & Rasid, M. F. A. (2013). U-shaped inductively coupled feed RFID tag antenna for gain enhancement. In 2013 IEEE international conference on RFID-technologies and applications (RFID-TA) (pp. 1–4).Google Scholar
  7. 7.
    Alshawish, R. A., Alfagih, S. A. M., & Musbah, M. S. (2016). Big data applications in smart cities. In 2016 International conference on engineering MIS (ICEMIS) (pp. 1–7). doi:10.1109/ICEMIS.2016.7745338.
  8. 8.
    Amendola, S., Lodato, R., Manzari, S., Occhiuzzi, C., & Marrocco, G. (2014). RFID technology for IoT-based personal healthcare in smart spaces. IEEE Internet of Things Journal, 1(2), 144–152.CrossRefGoogle Scholar
  9. 9.
    Andreev, S., Galinina, O., Pyattaev, A., Gerasimenko, M., Tirronen, T., Torsner, J., et al. (2015). Understanding the iot connectivity landscape: A contemporary m2m radio technology roadmap. IEEE Communications Magazine, 53(9), 32–40. doi:10.1109/MCOM.2015.7263370.CrossRefGoogle Scholar
  10. 10.
    Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.CrossRefMATHGoogle Scholar
  11. 11.
    Aust, S., Prasad, R. V., & Niemegeers, I. G. M. M. (2012). IEEE 802.11 ah: Advantages in standards and further challenges for sub 1 GHz wi-fi. In IEEE international conference on communications (pp. 6885–6889).Google Scholar
  12. 12.
    Barnaghi, P., Wang, W., Henson, C., & Taylor, K. (2012). Semantics for the internet of things: Early progress and back to the future. International Journal on Semantic Web and Information Systems, 8(1), 1–21.CrossRefGoogle Scholar
  13. 13.
    Bazzani, M., Conzon, D., Scalera, A., Spirito, M. A., & Trainito, C. I. (2012). Enabling the IoT paradigm in e-health solutions through the virtus middleware. In 11th IEEE international conference on trust, security and privacy in computing and communications, TrustCom-2012 (pp. 1954–1959).Google Scholar
  14. 14.
    Bellavista, P., Cardone, G., Corradi, A., & Foschini, L. (2013). Convergence of MANET and WSN in iot urban scenarios. IEEE Sensors Journal, 13(10), 3558–3567.CrossRefGoogle Scholar
  15. 15.
    Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientifc American, 284, 28–37.Google Scholar
  16. 16.
    Bin, L., Jianhua, Z., Baiqiang, Y., & Weiming, X. (2008). A dual-frequency ceramic spiral antenna with rectangle pbg structure array used for modern RFID system. In IET 2nd international conference on wireless, mobile and multimedia networks (ICWMMN 2008) (pp. 94–97).Google Scholar
  17. 17.
    Bjorninen, T., Nikkari, M., Ukkonen, L., Fan, Y., Elsherbeni, A., Sydanheimo, L., et al. (2008). Design and RFID signal analysis of a meander line UHF RFID tag antenna. In Antennas and propagation society international symposium, 2008. AP-S 2008 (pp. 1–4). IEEE.Google Scholar
  18. 18.
    Bo-yu, X., Guang-qiu, Z., & Zheng, T. (2010). Design of reflectarray antenna element based on hour-glass shaped coupling aperture. In Proceedings of the 9th international symposium on antennas, propagation and EM theory (pp. 155–158). doi:10.1109/ISAPE.2010.5696420.
  19. 19.
    Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings of the first edition of the MCC workshop on mobile cloud computing, MCC’12 (pp. 13–16). New York, NY, USA: ACM. doi:10.1145/2342509.2342513.
  20. 20.
    Bor, M. C., Roedig, U., Voigt, T., & Alonso, J. M. (2016). Do LoRa low-power wide-area networks scale? In Proceedings of the 19th ACM international conference on modeling, analysis and simulation of wireless and mobile systems, MSWiM’16 (pp. 59–67). New York, NY, USA: ACM.Google Scholar
  21. 21.
    Bormann, C., Castellani, A. P., & Shelby, Z. (2012). Coap: An application protocol for billions of tiny internet nodes. IEEE Internet Computing, 16(2), 62–67.CrossRefGoogle Scholar
  22. 22.
    Botta, A., De Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and internet of things: A survey. Future Generation Computer Systems, 56, 684–700.CrossRefGoogle Scholar
  23. 23.
    Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (2008). Extensible markup language (XML) 1.0 (5th ed.). Technical report, World Wide Web Consortium.Google Scholar
  24. 24.
    Calabrese, C., & Marrocco, G. (2008). Meandered-slot antennas for sensor-RFID tags. IEEE Antennas and Wireless Propagation Letters, 7, 5–8.CrossRefGoogle Scholar
  25. 25.
    Catarinucci, L., De Donno, D., Mainetti, L., Palano, L., Patrono, L., Stefanizzi, M. L., et al. (2015). An iot-aware architecture for smart healthcare systems. IEEE Internet of Things Journal, 2(6), 515–526.CrossRefGoogle Scholar
  26. 26.
    Chen, J. J., Liang, J. M., & Chen, Z. Y. (2014). Energy-efficient uplink radio resource management in lte-advanced relay networks for internet of things. In 2014 International wireless communications and mobile computing conference (IWCMC) (pp. 745–750). doi:10.1109/IWCMC.2014.6906449.
  27. 27.
    Chen, M. (2013). Towards smart city: M2m communications with software agent intelligence. Multimedia Tools and Applications, 67(1), 167–178. doi:10.1007/s11042-012-1013-4.CrossRefGoogle Scholar
  28. 28.
    Chen, S. Y., & Hsu, P. (2004). CPw-fed folded-slot antenna for 5.8 GHz RFID tags. Electronics Letters, 40(24), 1516–1517.CrossRefGoogle Scholar
  29. 29.
    Chianese, A., & Piccialli, F. (2014). Designing a smart museum: When cultural heritage joins iot. In 8th International conference on next generation mobile applications, services and technologies, NGMAST 2014 (pp. 300–306). Institute of Electrical and Electronics Engineers Inc.Google Scholar
  30. 30.
    Cohen, D. (2016). 5g and the iot: 5 trends and implications. Microwave Journal, 59(9), 44–48.Google Scholar
  31. 31.
    Crosby, G. V., & Vafa, F. (2013). Wireless sensor networks and LTE-A network convergence. In 38th Annual IEEE conference on local computer networks (pp. 731–734).Google Scholar
  32. 32.
    Da Silva, W. M., Tomas, G. H. R. P., Dias, K. L., Alvaro, A., Afonso, R. A., & Garcia, V. C. (2013). Smart cities software architectures: A survey. In 28th Annual ACM symposium on applied computing, SAC 2013 (pp. 1722–1727).Google Scholar
  33. 33.
    Dateki, T., Seki, H., & Minowa, M. (2016). From LTE-advanced to 5g: Mobile access system in progress. Fujitsu Scientific and Technical Journal, 52(2), 97–102.Google Scholar
  34. 34.
    De, S., Elsaleh, T., Barnaghi, P., & Meissner, A. S. (2012). An internet of things platform for real-world and digital objects. Scalable Computing, 13(1), 45–57.Google Scholar
  35. 35.
    Dean M., et al. (2004). Owl web ontology language reference.Google Scholar
  36. 36.
    Díaz-Zayas, A., García-Pérez, C. A., Recio-Pérez, Á. M., & Merino, P. (2016). 3GPP standards to deliver LTE connectivity for iot. In 2016 IEEE first international conference on internet-of-things design and implementation (IoTDI) (pp. 283–288).Google Scholar
  37. 37.
    Dohr, A., Modre-Osprian, R., Drobics, M., Hayn, D., & Schreier, G. (2010). The internet of things for ambient assisted living. In 7th International conference on information technology—New generations, ITNG 2010 (pp. 804–809).Google Scholar
  38. 38.
    Doukas, C., & Maglogiannis, I. (2012). Bringing iot and cloud computing towards pervasive healthcare. In 6th International conference on innovative mobile and internet services in ubiquitous computing, IMIS 2012 (pp. 922–926).Google Scholar
  39. 39.
    Ericsson. (2016). 5g radio access, white paper, uen 284 23-3204 rev c. Tech. rep., Ericsson.Google Scholar
  40. 40.
    eWall: ewall project website. (2017). http://www.ewallproject.eu.
  41. 41.
    Fazio, M., Paone, M., Puliafito, A., & Villari, M. (2012). Heterogeneous sensors become homogeneous things in smart cities. In 6th International conference on innovative mobile and internet services in ubiquitous computing, IMIS 2012 (pp. 775–780).Google Scholar
  42. 42.
    Fensel, D., Bussler, C., & Maedche, A. (2002). Semantic web enabled web services. In ISWC 2002, p. 12. LNCS 2342. Berlin: Springer.Google Scholar
  43. 43.
    Fettweis, G. P. (2016). 5g and the future of iot. In 42nd European solid-state circuits conference, ESSCIRC 2016 (Vol. 2016-October, pp. 21–24). IEEE Computer Society.Google Scholar
  44. 44.
    Fortino, G., Guerrieri, A., Russo, W., & Savaglio, C. (2014). Integration of agent-based and cloud computing for the smart objects-oriented iot. In 2014 18th IEEE international conference on computer supported cooperative work in design, CSCWD 2014 (pp. 493–498). IEEE Computer Society.Google Scholar
  45. 45.
    Foster, P. R., & Burberry, R. A. (1999). Antenna problems in RFID systems. In IEE colloquium on RFID technology (ref. no. 1999/123) (pp. 31–35).Google Scholar
  46. 46.
    Frank, R., Bronzi, W., Castignani, G., & Engel, T. (2014). Bluetooth low energy: An alternative technology for vanet applications. In Proceedings of the 11th annual conference on wireless on-demand network systems and services, IEEE/IFIP WONS 2014 (pp. 104–107).Google Scholar
  47. 47.
    Gavrilovska, L., Rakovic, V., & Atanasovski, V. (2016). Visions towards 5g: Technical requirements and potential enablers. Wireless Personal Communications, 87(3), 731–757.CrossRefGoogle Scholar
  48. 48.
    Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). LTE-advanced: Next-generation wireless broadband technology. IEEE Wireless Communications, 17(3), 10–22.CrossRefGoogle Scholar
  49. 49.
    Goudos, S. K., Siakavara, K., & Sahalos, J. N. (2014). Novel spiral antenna design using artificial bee colony optimization for uhf rfid applications. IEEE Antennas and Wireless Propagation Letters, 13, 528–531.CrossRefGoogle Scholar
  50. 50.
    Goudos, S. K., Siakavara, K., & Sahalos, J. N. (2015). Design of load-ended spiral antennas for rfid uhf passive tags using improved artificial bee colony algorithm. AEU: International Journal of Electronics and Communications, 69(1), 206–214. doi:10.1016/j.aeue.2014.09.008.Google Scholar
  51. 51.
    Goudos, S. K., Siakavara, K., Theopoulos, A., Vafiadis, E. E., & Sahalos, J. N. (2016). Application of gbest-guided artificial bee colony algorithm to passive uhf rfid tag design. International Journal of Microwave and Wireless Technologies, 8(3), 537–545. doi:10.1017/S1759078715000902.CrossRefGoogle Scholar
  52. 52.
    Goudos, S. K., Tsiflikiotis, A., Babas, D., Siakavara, K., Kalialakis, C., & Karagiannidis, G. K. (2017). Evolutionary design of a dual band e-shaped patch antenna for 5g mobile communications. In 2017 6th international conference on modern circuits and systems technologies (MOCAST) (pp. 1–4). doi:10.1109/MOCAST.2017.7937640.
  53. 53.
    Gozalvez, J. (2016). New 3GPP standard for iot [mobile radio]. IEEE Vehicular Technology Magazine, 11(1), 14–20.CrossRefGoogle Scholar
  54. 54.
    Guinard, D., Trifa, V., & Wilde, E. (2010). A resource oriented architecture for the Web of Things. In 2010 Internet of Things (IOT), Tokyo (pp. 1–8). doi:10.1109/IOT.2010.5678452.
  55. 55.
    Hancke, G. P., de Silva, B. C., & Hancke, G. P, Jr. (2013). The role of advanced sensing in smart cities. Sensors (Switzerland), 13(1), 393–425.CrossRefGoogle Scholar
  56. 56.
    Hazmi, A., Rinne, J., & Valkama, M. (2012). Feasibility study of IEEE 802.11ah radio technology for iot and M2M use cases. In 2012 IEEE globecom workshops, GC workshops 2012 (pp. 1687–1692).Google Scholar
  57. 57.
    He, D., & Zeadally, S. (2015). An analysis of RFID authentication schemes for internet of things in healthcare environment using elliptic curve cryptography. IEEE Internet of Things Journal, 2(1), 72–83.CrossRefGoogle Scholar
  58. 58.
    He, H., Du, Q., Song, H., Li, W., Wang, Y., & Ren, P. (2015). Traffic-aware acb scheme for massive access in machine-to-machine networks. In 2015 IEEE international conference on communications (ICC) (pp. 617–622). doi:10.1109/ICC.2015.7248390.
  59. 59.
    He, W., Yan, G., & Xu, L. D. (2014). Developing vehicular data cloud services in the iot environment. IEEE Transactions on Industrial Informatics, 10(2), 1587–1595.CrossRefGoogle Scholar
  60. 60.
    Hernández-Muñoz, J. M., Vercher, J. B., Muñoz, L., Galache, J. A., Presser, M., Hernández Gómez, L. A., et al. (2011). Smart cities at the forefront of the future internet. In J. Domingue, A. Galis, A. Gavras, T. Zahariadis, D. Lambert, F. Cleary, et al. (Eds.), The future internet: Future internet assembly 2011: Achievements and technological promises (pp. 447–462). Berlin: Springer. doi:10.1007/978-3-642-20898-0_32.
  61. 61.
    Hirvonen, M., Pursula, P., Jaakkola, K., & Laukkanen, K. (2004). Planar inverted-f antenna for radio frequency identification. Electronics Letters, 40(14), 848–850.CrossRefGoogle Scholar
  62. 62.
    Hoymann, C., Astely, D., Stattin, M., Wikstrom, G., Cheng, J. F., Hoglund, A., et al. (2016). LTE release 14 outlook. IEEE Communications Magazine, 54(6), 44–49.CrossRefGoogle Scholar
  63. 63.
    Huang, J. Z., Yang, P. H., Chew, W. C., & Ye, T. T. (2010). A novel broadband patch antenna for universal UHF RFID tags. Microwave and Optical Technology Letters, 52(12), 2653–2657.CrossRefGoogle Scholar
  64. 64.
    Hui, J. W., & Culler, D. E. (2008). Extending IP to low-power, wireless personal area networks. IEEE Internet Computing, 12(4), 37–45.CrossRefGoogle Scholar
  65. 65.
    IEEE. (2011). IEEE standard for local and metropolitan area networks-part 15.4: Low-rate wireless personal area networks (lr-WPANs).Google Scholar
  66. 66.
    Izadi, O. H., & Mehrparvar, M. (2010). A compact microstrip slot antenna with novel e-shaped coupling aperture. In 2010 5th international symposium on telecommunications (pp. 110–114). doi:10.1109/ISTEL.2010.5734008.
  67. 67.
    Jang, T. H., Kim, H. Y., Song, I. S., Lee, C. J., Lee, J. H., & Park, C. S. (2016). A wideband aperture efficient 60-GHz series-fed e-shaped patch antenna array with copolarized parasitic patches. IEEE Transactions on Antennas and Propagation, 64(12), 5518–5521. doi:10.1109/TAP.2016.2621023.CrossRefGoogle Scholar
  68. 68.
    Jara, A. J., Olivieri, A. C., Bocchi, Y., Jung, M., Kastner, W., & Skarmeta, A. F. (2014). Semantic web of things: An analysis of the application semantics for the iot moving towards the iot convergence. International Journal of Web and Grid Services, 10(2–3), 244–272.CrossRefGoogle Scholar
  69. 69.
    Jin, J., Gubbi, J., Marusic, S., & Palaniswami, M. (2014). An information framework for creating a smart city through internet of things. IEEE Internet of Things Journal, 1(2), 112–121.CrossRefGoogle Scholar
  70. 70.
    Jin, N., & Rahmat-Samii, Y. (2005). Parallel particle swarm optimization and finite- difference time-domain (pso/fdtd) algorithm for multiband and wide-band patch antenna designs. IEEE Transactions on Antennas and Propagation, 53(11), 3459–3468. doi:10.1109/TAP.2005.858842.CrossRefGoogle Scholar
  71. 71.
    Jiun-Peng, C., & Powen, H. (2013). A compact strip dipole coupled split-ring resonator antenna for RFID tags. IEEE Transactions on Antennas and Propagation, 61(11), 5372–5376.CrossRefGoogle Scholar
  72. 72.
    Jover, R. P., & Murynets, I. (2015). Connection-less communication of iot devices over lte mobile networks. In 2015 12th annual IEEE international conference on sensing, communication, and networking (SECON) (pp. 247–255). doi:10.1109/SAHCN.2015.7338323.
  73. 73.
    Kamiya, T., & Schneider, J. (2011). Efficient xml interchange (exi) format 1.0. World wide web consortium.Google Scholar
  74. 74.
    Kasparick, M., Wunder, G., Jung, P., & Maryopi, D. (2014). Bi-orthogonal waveforms for 5g random access with short message support. In 20th European wireless conference, EW 2014 (pp. 293–298). VDE VERLAG GMBH.Google Scholar
  75. 75.
    Katayama, M., Nakada, H., Hayashi, H., & Shimizu, M. (2012). Survey of RFID and its application to international ocean/air container tracking. IEICE Transactions on Communications, E95–B(3), 773–793.CrossRefGoogle Scholar
  76. 76.
    Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future internet: The internet of things architecture, possible applications and key challenges. In Proceedings of the 10th international conference on frontiers of information technology, FIT 2012 (pp. 257–260).Google Scholar
  77. 77.
    Kiljander, J., D’Elia, A., Morandi, F., Hyttinen, P., Takalo-Mattila, J., Ylisaukko-Oja, A., et al. (2014). Semantic interoperability architecture for pervasive computing and internet of things. IEEE Access, 2, 856–873.CrossRefGoogle Scholar
  78. 78.
    Korzun, D. G., Balandin, S. I., & Gurtov, A. V. (2013). Deployment of smart spaces in internet of things: Overview of the design challenges. In S. Balandin, S. Andreev & Y. Koucheryavy (Eds.), Internet of things, smart spaces, and next generation networking: 13th international conference, NEW2AN 2013 and 6th conference, ruSMART 2013, St. Petersburg, Russia, August 28–30, 2013. Proceedings (pp. 48–59). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-40316-3_5.
  79. 79.
    Kostelník, P., Sarnovský, M., & Furdík, K. (2011). The semantic middleware for networked embedded systems applied in the internet of things and services domain. Scalable Computing, 12(3), 307–315.Google Scholar
  80. 80.
    Kushalnagar, N., Montenegro, G., & Schumacher, C. (2007). IPv6 over low-power wireless personal area networks (6lowpans): Overview, assumptions, problem statement, and goals. RFC 4919.Google Scholar
  81. 81.
    Le-Phuoc, D., Nguyen-Mau, H. Q., Parreira, J. X., & Hauswirth, M. (2012). A middleware framework for scalable management of linked streams. Journal of Web Semantics, 16, 42–51.CrossRefGoogle Scholar
  82. 82.
    Lei, C., Shu, Y., & Hanhua, Y. (2009). Study and design of a modified fractal antenna for RFID applications. In ISECS international colloquium on computing, communication, control, and management, 2009. CCCM 2009 (Vol. 1, pp. 8–11).Google Scholar
  83. 83.
    Li, B., & Yu, J. (2011). Research and application on the smart home based on component technologies and internet of things. In 2011 International conference on advanced in control engineering and information science, CEIS 2011 (Vol. 15, pp. 2087–2092).Google Scholar
  84. 84.
    Li, D., Cao, J., & Yao, Y. (2015). Big data in smart cities. Science China Information Sciences, 58(10), 1–12. doi:10.1007/s11432-015-5396-5.Google Scholar
  85. 85.
    Liang, J. M., Chen, J. J., Cheng, H. H., & Tseng, Y. C. (2013). An energy-efficient sleep scheduling with qos consideration in 3gpp lte-advanced networks for internet of things. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(1), 13–22.CrossRefGoogle Scholar
  86. 86.
    Lin, H. D., & Gao, G. J. (2014). The application research on logistics of dangerous chemical cargoes based on the technology of internet of things. Advanced Materials Research, 860–863, 2929–2935.Google Scholar
  87. 87.
    LoRaAlliance: A technical overview of lora and lorawan. (2015).Google Scholar
  88. 88.
    Manola, F., & Miller, E. (2004). RDF primer. W3C recommendation 10 February 2004. http://www.w3.org/TR/rdf-primer/.
  89. 89.
    McGuinness, D. L., & Van Harmelen, F. (2004). OWL web ontology language overview. W3C.Google Scholar
  90. 90.
    Mehmood, Y., Görg, C., Muehleisen, M., & Timm-Giel, A. (2015). Mobile M2M communication architectures, upcoming challenges, applications, and future directions. Eurasip Journal on Wireless Communications and Networking, 2015(1), 1–37.CrossRefGoogle Scholar
  91. 91.
    Mihovska, A., & Kyriazakos, S. (2017). eWALL innovation for smart e-health monitoring devices. In F. J. Velez & F. Derogarian (Eds.), Wearable technologies and wireless body sensor networks for healthcare. IET Publishers.Google Scholar
  92. 92.
    Mikhaylov, K., Petäjäjärvi, J., & Hänninen, T. (2016). Analysis of capacity and scalability of the lora low power wide area network technology. In European wireless conference 2016, EW 2016 (pp. 119–124).Google Scholar
  93. 93.
    Montenegro, G., Kushalnagar, N., Hui, J., & Culler, D. (2007). Transmission of IPv6 packets overt IEEE 802.15. 4 networks. Internet Engineering Task Force (IETF).Google Scholar
  94. 94.
    Monti, G., Catarinucci, L., & Tarricone, L. (2009). Compact microstrip antenna for RFID applications. Progress in Electromagnetics Research Letters, 8, 191–199.CrossRefGoogle Scholar
  95. 95.
    Muñoz, R., Mangues-Bafalluy, J., Vilalta, R., Verikoukis, C., Alonso-Zarate, J., Bartzoudis, N., et al. (2016). The CTtc 5g end-to-end experimental platform: Integrating heterogeneous wireless/optical networks, distributed cloud, and iot devices. IEEE Vehicular Technology Magazine, 11(1), 50–63.CrossRefGoogle Scholar
  96. 96.
    Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mmwave) for 5g: Opportunities and challenges. Wireless Networks, 21(8), 2657–2676.CrossRefGoogle Scholar
  97. 97.
    Nokia. (2016). LTE evolution for iot connectivity. Tech. rep., Nokia.Google Scholar
  98. 98.
    Olyaei, B. B., Pirskanen, J., Raeesi, O., Hazmi, A., & Valkama, M. (2013). Performance comparison between slotted IEEE 802.15.4 and IEEE 802.1 lah in iot based applications. In International conference on wireless and mobile computing, networking and communications (pp. 332–337).Google Scholar
  99. 99.
    Padhi, S. K., Karmakar, N. C., Law, C. L., & Aditya, S. (2003). A dual polarized aperture coupled circular patch antenna using a c-shaped coupling slot. IEEE Transactions on Antennas and Propagation, 51(12), 3295–3298.CrossRefGoogle Scholar
  100. 100.
    Palattella, M. R., Accettura, N., Vilajosana, X., Watteyne, T., Grieco, L. A., Boggia, G., et al. (2013). Standardized protocol stack for the internet of (important) things. IEEE Communications Surveys & Tutorials, 15(3), 1389–1406.CrossRefGoogle Scholar
  101. 101.
    Palattella, M. R., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., et al. (2016). Internet of things in the 5g era: Enablers, architecture, and business models. IEEE Journal on Selected Areas in Communications, 34(3), 510–527.CrossRefGoogle Scholar
  102. 102.
    Paredes, F., Zamora, G., Herraiz-Martinez, F. J., Martin, F., & Bonache, J. (2011). Dual-band UHF-RFID tags based on meander-line antennas loaded with spiral resonators. IEEE Antennas and Wireless Propagation Letters, 10, 768–771.CrossRefGoogle Scholar
  103. 103.
    Pasluosta, C. F., Gassner, H., Winkler, J., Klucken, J., & Eskofier, B. M. (2015). An emerging era in the management of parkinson’s disease: Wearable technologies and the internet of things. IEEE Journal of Biomedical and Health Informatics, 19(6), 1873–1881.CrossRefGoogle Scholar
  104. 104.
    Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Sensing as a service model for smart cities supported by internet of things. Transactions on Emerging Telecommunications Technologies, 25(1), 81–93.CrossRefGoogle Scholar
  105. 105.
    Petajajarvi, J., Mikhaylov, K., Hamalainen, M., & Iinatti, J. (2016). Evaluation of lora lpwan technology for remote health and wellbeing monitoring. In International symposium on medical information and communication technology, ISMICT (Vol. 2016-June).Google Scholar
  106. 106.
    Pozar, D. M. (1985). Microstrip antenna aperture-coupled to a microstripline. Electronics Letters, 21(2), 49–50. doi:10.1049/el:19850034.CrossRefGoogle Scholar
  107. 107.
    Rao, K. V. S., Nikitin, P. V., & Lam, S. F. (2005). Antenna design for UHF RFID tags: A review and a practical application. IEEE Transactions on Antennas and Propagation, 53(12), 3870–3876.CrossRefGoogle Scholar
  108. 108.
    Ratasuk, R., Mangalvedhe, N., & Ghosh, A. (2015). Overview of LTE enhancements for cellular iot. In 2015 IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 2293–2297).Google Scholar
  109. 109.
    Ratasuk, R., Mangalvedhe, N., Zhang, Y., Robert, M., & Koskinen, J. P. (2016). Overview of narrowband iot in LTE rel-13. In 2016 IEEE conference on standards for communications and networking (CSCN) (pp. 1–7).Google Scholar
  110. 110.
    Ratasuk, R., Vejlgaard, B., Mangalvedhe, N., & Ghosh, A. (2016). Nb-iot system for M2M communication. In 2016 IEEE wireless communications and networking conference (pp. 1–5).Google Scholar
  111. 111.
    Rico-Alvarino, A., Vajapeyam, M., Xu, H., Wang, X., Blankenship, Y., Bergman, J., et al. (2016). An overview of 3GPP enhancements on machine to machine communications. IEEE Communications Magazine, 54(6), 14–21.CrossRefGoogle Scholar
  112. 112.
    Rodríguez-Molina, J., Martínez, J. F., Castillejo, P., & López, L. (2013). Combining wireless sensor networks and semantic middleware for an internet of things-based sportsman/woman monitoring application. Sensors (Switzerland), 13(2), 1787–1835.CrossRefGoogle Scholar
  113. 113.
    Ruta, M., Scioscia, F., & Di Sciascio, E. (2012). Enabling the semantic web of things: Framework and architecture. In 6th IEEE international conference on semantic computing, ICSC 2012 (pp. 345–347).Google Scholar
  114. 114.
    Ryu, M., Kim, J., & Yun, J. (2015). Integrated semantics service platform for the internet of things: A case study of a smart office. Sensors (Switzerland), 15(1), 2137–2160.CrossRefGoogle Scholar
  115. 115.
    Sanchez, L., Muñoz, L., Galache, J. A., Sotres, P., Santana, J. R., Gutierrez, V., et al. (2014). Smartsantander: Iot experimentation over a smart city testbed. Computer Networks, 61, 217–238.CrossRefGoogle Scholar
  116. 116.
    Sanchez, P. M., Lopez, R. M., & Skarmeta, A. F. G. (2013). Panatiki: A network access control implementation based on pana for iot devices. Sensors, 13(11), 14888–14917. doi:10.3390/s131114888. http://www.mdpi.com/1424-8220/13/11/14888.
  117. 117.
    Schwartz, D. G. (2003). From open is semantics to the semantic web: The road ahead. IEEE Intelligent Systems, 18(3), 52–58.CrossRefGoogle Scholar
  118. 118.
    Shelby, Z., Hartke, K., Bormann, C., & Frank, B. (2014). Constrained application protocol (coap). RFc 7252. Internet Engineering Task Force (IETF).Google Scholar
  119. 119.
    Shi, X., Tao, D., & Voß, S. (2011). RFID technology and its application to port-based container logistics. Journal of Organizational Computing and Electronic Commerce, 21(4), 332–347.CrossRefGoogle Scholar
  120. 120.
    Singh, D., Tripathi, G., & Jara, A. J. (2014). A survey of internet-of-things: Future vision, architecture, challenges and services. In 2014 IEEE world forum on internet of things, WF-IoT 2014 (pp. 287–292). IEEE Computer Society.Google Scholar
  121. 121.
    Skouby, K. E., & Lynggaard, P. (2014). Smart home and smart city solutions enabled by 5g, iot, aai and cot services. In 2014 International conference on contemporary computing and informatics, IC3I 2014 (pp. 874–878). Institute of Electrical and Electronics Engineers Inc.Google Scholar
  122. 122.
    Suciu, G., Vulpe, A., Halunga, S., Fratu, O., Todoran, G., & Suciu, V. (2013). Smart cities built on resilient cloud computing and secure internet of things. In 19th International conference on control systems and computer science, CSCS 2013 (pp. 513–518).Google Scholar
  123. 123.
    Sun, P., Shi, T. Y., & Zhang, W. J. (2012). RFID application for emu overhaul. Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 12(3), 52–58.Google Scholar
  124. 124.
    Sun, Y., & Jara, A. J. (2014). An extensible and active semantic model of information organizing for the internet of things. Personal and Ubiquitous Computing, 18(8), 1821–1833.CrossRefGoogle Scholar
  125. 125.
    Talwar, S., Choudhury, D., Dimou, K., Aryafar, E., Bangerter, B., & Stewart, K. (2014). Enabling technologies and architectures for 5g wireless. In 2014 IEEE MTT-S international microwave symposium, IMS 2014. Institute of Electrical and Electronics Engineers Inc.Google Scholar
  126. 126.
    Tan, L., & Wang, N. (2010). Future internet: The internet of things. In 2010 3rd international conference on advanced computer theory and engineering (ICACTE) (Vol. 5, pp. V5–376–V5–380). doi:10.1109/ICACTE.2010.5579543
  127. 127.
    Taneja, M. (2016). LTE-lpwa networks for iot applications. In 2016 International conference on information and communication technology convergence (ICTC) (pp. 396–399).Google Scholar
  128. 128.
    Tarouco, L. M. R., Bertholdo, L. M., Granville, L. Z., Arbiza, L. M. R., Carbone, F., Marotta, M., et al. (2012). Internet of things in healthcare: Interoperatibility and security issues. In 2012 IEEE international conference on communications (ICC) (pp. 6121–6125). doi:10.1109/ICC.2012.6364830.
  129. 129.
    Toussaint, J., Rachkidy, N. E., & Guitton, A. (2016). Performance analysis of the on-the-air activation in lorawan. In 2016 IEEE 7th annual information technology, electronics and mobile communication conference (IEMCON) (pp. 1–7). doi:10.1109/IEMCON.2016.7746082.
  130. 130.
    Vahedi, E., Ward, R. K., & Blake, I. F. (2014). Performance analysis of RFID protocols: CDMA versus the standard epc gen-2. IEEE Transactions on Automation Science and Engineering, 11(4), 1250–1261.CrossRefGoogle Scholar
  131. 131.
    Vlacheas, P., Giaffreda, R., Stavroulaki, V., Kelaidonis, D., Foteinos, V., Poulios, G., et al. (2013). Enabling smart cities through a cognitive management framework for the internet of things. IEEE Communications Magazine, 51(6), 102–111.CrossRefGoogle Scholar
  132. 132.
    Wang, W., De, S., Toenjes, R., Reetz, E., & Moessner, K. (2012). A comprehensive ontology for knowledge representation in the internet of things. In 11th IEEE international conference on trust, security and privacy in computing and communications, TrustCom-2012 (pp. 1793–1798).Google Scholar
  133. 133.
    Wang, Y., Xiao, Z., & Lv, J. (2013). Research on the traffic information system based on the internet of things. In 2nd international conference on transportation information and safety: Improving multimodal transportation systems—Information, safety, and integration, ICTIS 2013 (pp. 767–772).Google Scholar
  134. 134.
    Want, R. (2006). An introduction to RFID technology. IEEE Pervasive Computing, 5(1), 25–33.CrossRefGoogle Scholar
  135. 135.
    Want, R. (2011). Near field communication. IEEE Pervasive Computing, 10(3), 4–7.CrossRefGoogle Scholar
  136. 136.
    Wu, Q., Ding, G., Xu, Y., Feng, S., Du, Z., Wang, J., et al. (2014). Cognitive internet of things: A new paradigm beyond connection. IEEE Internet of Things Journal, 1(2), 129–143.CrossRefGoogle Scholar
  137. 137.
    Wunder, G., Jung, P., Kasparick, M., Wild, T., Schaich, F., Chen, Y., et al. (2014). 5GNow: Non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Communications Magazine, 52(2), 97–105.CrossRefGoogle Scholar
  138. 138.
    Xianming, Q., & Ning, Y. (2004). A folded dipole antenna for RFID. In Antennas and propagation society international symposium, 2004. IEEE (Vol. 1, pp. 97–1001).Google Scholar
  139. 139.
    Xu, B., Xu, L. D., Cai, H., Xie, C., Hu, J., & Bu, F. (2014). Ubiquitous data accessing method in iot-based information system for emergency medical services. IEEE Transactions on Industrial Informatics, 10(2), 1578–1586.CrossRefGoogle Scholar
  140. 140.
    Yang, G., Xie, L., Mäntysalo, M., Zhou, X., Pang, Z., Xu, L. D., et al. (2014). A health-iot platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. IEEE Transactions on Industrial Informatics, 10(4), 2180–2191.CrossRefGoogle Scholar
  141. 141.
    Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32.CrossRefGoogle Scholar
  142. 142.
    Zhang, G. (2014). Research on the optimization of agricultural supply chain based on internet of things. In D. Li & Y. Chen (Eds.), Computer and computing technologies in agriculture VII: 7th IFIP WG 5.14 international conference, CCTA 2013, Beijing, China, September 18–20, 2013, Revised Selected Papers, Part I (pp. 300–305). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-54344-9_36.
  143. 143.
    Zhang, L., Cui, Z., Jiao, Y. C., & Zhang, F. S. (2009). Broadband patch antenna design using differential evolution algorithm. Microwave and Optical Technology Letters, 51(7), 1692–1695. doi:10.1002/mop.24423.CrossRefGoogle Scholar
  144. 144.
    Zhang, P., Zhang, Y., Wang, L., Zhou, C., & Li, W. (2013). Transportation process monitoring of car-carrier in iot environment. In 2nd international conference on transportation information and safety: improving multimodal transportation systems—Information, safety, and integration, ICTIS 2013 (pp. 322–332).Google Scholar
  145. 145.
    Zhao, C., Li, X. S., & Chen, J. S. (2011). Study on the application of internet of things in the logistics in forest industry. Applied Mechanics and Materials, 97–97, 664–668.Google Scholar
  146. 146.
    Zhongbao, W., Shaojun, F., Shiqiang, F., & Shouli, J. (2011). Single-fed broadband circularly polarized stacked patch antenna with horizontally meandered strip for universal UHF RFID applications. IEEE Transactions on Microwave Theory and Techniques, 59(4), 1066–1073.CrossRefGoogle Scholar
  147. 147.
    Zhu, W., Xiao, S., Yuan, R., & Tang, M. (2014). Broadband and dual circularly polarized patch antenna with h-shaped aperture. In 2014 International symposium on antennas and propagation conference proceedings (pp. 549–550). doi:10.1109/ISANP.2014.7026769.
  148. 148.
    Ziegler, S., Crettaz, C., & Thomas, I. (2014). IPv6 as a global addressing scheme and integrator for the internet of things and the cloud. In Proceedings of the 2014 IEEE 28th international conference on advanced information networking and applications workshops, IEEE WAINA 2014 (pp. 797–802).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sotirios K. Goudos
    • 1
  • Panagiotis I. Dallas
    • 2
  • Stella Chatziefthymiou
    • 1
  • Sofoklis Kyriazakos
    • 3
  1. 1.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Wireless Network Systems DivisionINTRACOM Telecom S.A.Peania, AthensGreece
  3. 3.Department of Business Development and TechnologyAarhus UniversityHerningDenmark

Personalised recommendations