Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A Metamaterial Inspired Compact Open Split Ring Resonator Antenna for Multiband Operation

Abstract

In this work, a metamaterial inspired compact open split ring resonator (OSRR) antenna is investigated for multiband operation. The proposed antenna uses closely employed open split rings as a radiating element which provides efficient size reduction and broader bandwidth performance. The proposed antenna with the overall size of 27.5 × 16.08 × 1.6 mm3 is fabricated and tested. The measured results indicate that it covers 2.4/5.2/5.8 GHz (Wireless LAN), 5.5 GHz (WiMAX) and 7.4 GHz (X-band downlink) applications. The OSRR antenna has achieved size reduction of 38.83% and 52.83% compared to the split ring resonator and ring antennas respectively. It is observed that the proposed antenna produces better performance than the existing antennas in the literature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Chen, H., Yang, X., Yin, Y. Z., Fan, S. T., & Wu, J. J. (2013). Triband planar monopole antenna with compact radiator for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 12, 1440–1443.

  2. 2.

    Liu, W. C., Wu, C. M., & Chu, N. C. (2012). A compact low-profile dual-band antenna for WLAN and WAVE applications. AEU—International Journal of Electronics and Communication, 66, 467–471.

  3. 3.

    Xu, Y., Luan, Y. C., & Jiao, Y. C. (2012). Compact CPW-fed printed monopole antenna with triple-band characteristics for WLAN/WiMAX applications. Electronics Letters, 48, 1519–1520.

  4. 4.

    Ghatak, R., Mishra, R. K. S., & Poddar, D. R. (2008). Perturbed Sierpinski carpet antenna with CPW feed for IEEE 802. 11 a/b WLAN application. IEEE Antennas and Wireless Propagation Letters, 7, 742–744.

  5. 5.

    Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physics Review Letters, 84, 4184–4187.

  6. 6.

    Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions Microwave Theory and Techniques, 47, 2075–2084.

  7. 7.

    Baena, J. D., Bonache, J., Martín, F., Sillero, R. M., Falcone, F., Lopetegi, T., et al. (2005). Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Transactions Microwave Theory and Techniques, 53, 1451–1461.

  8. 8.

    Alici, K. B., & Ozbay, E. (2007). Electrically small split ring resonator antennas. Journal of Applied Physics, 101, 083101–083104.

  9. 9.

    Antoniades, M. A., & Eleftheriades, G. V. (2009). A broadband dual-mode monopole antenna using NRI-TL metamaterial loading. IEEE Antennas and Wireless Propagation Letters, 8, 258–261.

  10. 10.

    Barbuto, M., Monti, A., Bilotti, F., & Toscano, A. (2013). Design of a non-foster actively loaded SRR and application in metamaterial-inspired components. IEEE Transactions on Antennas and Propagation, 61, 1219–1227.

  11. 11.

    Ntaikos, D. K., Bourgis, N. K., & Yioultsis, T. V. (2011). Metamaterial-based electrically small multiband planar monopole antennas. IEEE Antennas and Wireless Propagation Letters, 10, 963–966.

  12. 12.

    Barbuto, M., Bilotti, F., & Toscano, A. (2012). Design of a multifunctional SRR-loaded printed monopole antenna. International Journal of RF and Microwave Computer-Aided Engineering, 22, 552–557.

  13. 13.

    Rajeshkumar, V., & Raghavan, S. (2015). Compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications. International Journal of Electronics and Communication (AEÜ), 69, 274–280.

  14. 14.

    Basaran, S. C., & Sertel, K. (2013). Dual wideband CPW-fed monopole antenna with split-ring resonators. Microwave and Optical Letters, 55, 2088–2092.

  15. 15.

    Rajkumar, R., & Usha Kiran, K. (2016). A compact metamaterial multiband antenna for WLAN/WiMAX/ITU band applications. International Journal of electronics and communication (AEÜ), 70, 599–604.

  16. 16.

    Basaran, S. C., Olgun, U., & Sertel, K. (2013). Multiband monopole antenna with complementary split ring resonators for WLAN and WiMAX applications. Electronics Letters, 49, 10–11.

  17. 17.

    Elsdon, M., & Yurduseven, O. (2015). Direct-fed reduced size patch antenna using array of cSRR in the ground plane. Microwave and Optical Technology Letters, 57, 1526–1529.

  18. 18.

    Mitra, D., & Chaudhuri, S. R. B. (2012). CPW-fed miniaturized split ring-loaded slot antenna. Microwave and Optical Technology Letters, 54, 1907–1911.

  19. 19.

    Srivastava, K. V., Sarkar, D., & Saurav, K. (2014). Multi-band microstrip-fed slot antenna loaded with split-ring resonator. Electronics Letters, 50, 1498–1500.

  20. 20.

    Velez, A., Aznar, F., Bonache, J., Velazquez-Ahumada, M. C., Martel, J., & Martin, F. (2009). Open complementary split ring resonators (OCSRRs) and their application to wideband CPW band pass filters. IEEE Microwave and Wireless and Components Letters, 19, 197–199.

  21. 21.

    Martel, J., Marqués, R., Falcone, F., Baena, J. D., Medina, F., Martín, F., et al. (2004). A new LC series element for compact bandpass filter design. IEEE Microwave and Wireless Components Letters, 14, 210–212.

  22. 22.

    Aznar, F., Vélez, A., Durán-Sindreu, M., Bonache, J., & Martín, F. (2010). Open complementary split ring resonators: Physics, modelling, and analysis. Microwave and Optical Technology Letters, 52, 1520–1526.

  23. 23.

    Chen, H., Zhang, J., Bai, Y., Luo, Y., Ran, L., Jiang, Q., et al. (2006). Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. Optics Express, 14, 12944–12949.

  24. 24.

    Smith, D. R., Vier, D. C., Koschny, T., & Soukoulis, C. M. (2005). Electromagnetic parameter retrieval from in homogeneous metamaterials. Physics Review B, 71, 36617–36627.

  25. 25.

    Smith, D. R., Schultz, S., Markos, P., & Soukoulis, C. M. (2002). Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients. Physics Review B, 65, 195104–195109.

Download references

Author information

Correspondence to Rengasamy Rajkumar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, R., Usha Kiran, K. A Metamaterial Inspired Compact Open Split Ring Resonator Antenna for Multiband Operation. Wireless Pers Commun 97, 951–965 (2017). https://doi.org/10.1007/s11277-017-4545-0

Download citation

Keywords

  • Open split ring resonator antenna
  • Metamaterials
  • Multi band
  • Compact
  • Split ring resonator