Sewage Water Quality Monitoring Framework Using Multi-parametric Sensors

  • Himanshu Jindal
  • Sharad Saxena
  • Singara Singh Kasana
Article

Abstract

The increased sewage inflow has resulted in to water contamination challenge which has affected the human life with respect to various sectors like agriculture and domestic. The traditional methods of sewage water quality monitoring are found to be inefficient as they are either fundamentally incorrect, too expensive or based on sampling methods. Therefore, to overcome the challenge, the manuscript has proposed a sewage water quality monitoring framework using multi-parametric sensor for water quality monitoring. It uses cheap and portable multi-parametric sensors, smart-phone and an ad hoc network. The functionality of the proposed framework is tested at sewage treatment plant of Thapar University, Patiala, Punjab in India. The obtained measurements suggest for re-usability of treated sewage water for domestic and irrigation purposes. The sensor’s sleep and wake-up states enhances the framework’s performance in terms of sustainability for longer time.

Keywords

Sewage Sensors Water Monitoring Smartphones Multi-parameter pH Temperature 

References

  1. 1.
    Angove, P., Grady, M. O., Hayes, J., Flynn, B. O., Hare, G. M. P. O., & Diamond, D. (2011). A mobile gateway for remote interaction with wireless sensor networks. IEEE Sensors Journal, 11(12), 3309–3310. doi:10.1109/JSEN.2011.2159199.CrossRefGoogle Scholar
  2. 2.
    Ballari, D., Wachowicz, M., & Callejo, M. A. M. (2009). Metadata behind the interoperability of wireless sensor networks. Sensors, 9(5), 36–35. http://www.mdpi.com/1424-8220/9/5/3635.
  3. 3.
    Banik, B., Alfonso, L., Torres, A., Mynett, A., Cristo, C. D., & Leopardi, A. (2015). Optimal placement of water quality monitoring stations in sewer systems: An information theory approach. In Procedia Engineering. Computing and control for the water industry (CCWI2015) sharing the best practice in water management, 119, 1308–1317. doi:10.1016/j.proeng.2015.08.956. http://www.sciencedirect.com/science/article/pii/S1877705815026260.
  4. 4.
    Basagni, S., Carosi, A., Melachrinoudis, E., Petrioli, C., & Wang, Z. M. (2008). Controlled sink mobility for prolonging wireless sensor networks lifetime. Wireless Networks, 14(6), 831–858. doi:10.1007/s11276-007-0017-x..CrossRefGoogle Scholar
  5. 5.
    Bruneo, D., Distefano, S., Longo, F., Puliafito, A., & Scarpa, M. (2010). Reliability assessment of wireless sensor nodes with non-linear battery discharge. In Wireless Days (WD), 2010 IFIP (pp. 1–5). IEEE.Google Scholar
  6. 6.
    der Bruggen, B. V., & Braeken, L. (2006). The challenge of zero discharge: From water balance to regeneration. Desalination, 188(3), 177–183. doi:10.1016/j.desal.2005.04.115. http://www.sciencedirect.com/science/article/pii/S0011916406000488.
  7. 7.
    Fortuna, C., Oniga, P., Padrah, Z., Mohorcic, M., & Moraru, A. (2012). Metadata management for the web of things: A practical perspective. In Proceedings of the Third International Workshop on the Web of Things, WOT ’12 (pp. 401–406). New York, NY: ACM. doi:10.1145/2379756.2379760.
  8. 8.
    Glasgow, H. B., Burkholder, J. M., Reed, R. E., Lewitus, A. J., & Kleinman, J. E. (2004). Real-time remote monitoring of water quality: A review of current applications, and advancements in sensor, telemetry, and computing technologies. Journal of Experimental Marine Biology and Ecology, 300(1–2), 409–448. doi:10.1016/j.jembe.2004.02.022..CrossRefGoogle Scholar
  9. 9.
    Karvonen, H., Suhonen, J., Petjjrvi, J., Hmlinen, M., Hnnikinen, M., & Pouttu, A. (2014). Hierarchical architecture for multi-technology wireless sensor networks for critical infrastructure protection. Wireless Personal Communications, 76(2), 209–229. doi:10.1007/s11277-014-1686-2.CrossRefGoogle Scholar
  10. 10.
    Li, J., Zhang, Y., Chen, Y., Nagaraja, K., Li, S., & Raychaudhuri, D. (2013). A mobile phone based WSN infrastructure for IoT over future internet architecture. In GreenCom/iThings/CPScom (pp. 426–433). IEEE.Google Scholar
  11. 11.
    Ma, H., Tsai, T. F., & Liu, C. C. (2010). Real-time monitoring of water quality using temporal trajectory of live fish. Expert Systems with Applications, 37(7), 5158–5171. doi:10.1016/j.eswa.2009.12.076. http://www.sciencedirect.com/science/article/pii/S0957417409011221.
  12. 12.
    Morn, M. J., Luque, R., & Casilari, E. (2014). On the capability of smartphones to perform as communication gateways in medical wireless personal area networks. Sensors, 14(1), 575. doi:10.3390/s140100575. http://www.mdpi.com/1424-8220/14/1/575.
  13. 13.
    Pchyov, J., Kochl, M., & Hodo, M. (2013). Development of special smartphone-based body area network: Energy requirements. In: M. P. M. Ganzha & L. Maciaszek (Eds.), Proceedings of the 2013 federated conference on computer science and information systems (pp. 895–900). IEEE.Google Scholar
  14. 14.
    Pokorny, J. (2006). Database architectures: Current trends and their relationships to environmental data management. Environmental Modelling and Software, 21(11), 1579–1586. doi:10.1016/j.envsoft.2006.05.004. http://www.sciencedirect.com/science/article/B6VHC-4K8SC6K-1/2/87ebea752a7483136aafe12492af7be5. Environmental Informatics.
  15. 15.
    Rawat, P., Singh, K. D., Chaouchi, H., & Bonnin, J. M. (2014). Wireless sensor networks: A survey on recent developments and potential synergies. The Journal of Supercomputing, 68(1), 1–48. doi:10.1007/s11227-013-1021-9..CrossRefGoogle Scholar
  16. 16.
    Shaban, M., Urban, B., Saadi, A. E., & Faisal, M. (2010). Detection and mapping of water pollution variation in the nile delta using multivariate clustering and GIS techniques. Journal of Environmental Management, 91(8), 1785–1793. doi:10.1016/j.jenvman.2010.03.020. http://www.sciencedirect.com/science/article/pii/S0301479710000927.
  17. 17.
    Suri, A., Iyengar, S., & Cho, E. (2006). Ecoinformatics using wireless sensor networks: An overview. Ecological Informatics, 1(3), 287–293. doi:10.1016/j.ecoinf.2006.02.008. http://www.sciencedirect.com/science/article/pii/S1574954106000562. 4th International Conference on Ecological Informatics.
  18. 18.
    Vassev, E., Hinchey, M., & Nixon, P. (2010). Developing intelligent sensor networks: A technological convergence approach. In Proceedings of the 2010 ICSE workshop on software engineering for sensor network applications, SESENA ’10 (pp. 66–71). New York, NY: ACM. doi:10.1145/1809111.1809129.
  19. 19.
    Wu, L., Riihijarvi, J., & Mahonen, P. (2007). A modular wireless sensor network gateway design. In Communications and networking in China, 2007. CHINACOM ’07. Second international conference (pp. 882–886). doi:10.1109/CHINACOM.2007.4469525.
  20. 20.
    Yang, W., Nan, J., & Sun, D. (2008). An online water quality monitoring and management system developed for the liming river basin in Daqing, China. Journal of Environmental Management, 88(2), 318325. doi:10.1016/j.jenvman.2007.03.010..CrossRefGoogle Scholar
  21. 21.
    Zennaro, M., & Bagula, A. (2009). Design of a flexible and reliable gateway to collect sensor data in intermittent power environments. Computer Communications and Networks, International Conference, 0, 1–6. doi:10.1109/ICCCN.2009.5235298.

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Himanshu Jindal
    • 1
  • Sharad Saxena
    • 1
  • Singara Singh Kasana
    • 1
  1. 1.Computer Science and Engineering DepartmentThapar UniversityPatialaIndia

Personalised recommendations