Advertisement

Wireless Personal Communications

, Volume 97, Issue 1, pp 539–563 | Cite as

Secrecy Outage of Dual-Hop Amplify-and-Forward Relay System with Diversity Combining at the Eavesdropper

  • Chinmoy KunduEmail author
  • Abhishek Jindal
  • Ranjan Bose
Article

Abstract

In this paper, a dual-hop amplify-and-forward relay system is considered with an eavesdropper where each link undergoes independent, non-identical, flat Rayleigh fading. The eavesdropper is capable of diversity combining the direct and relayed communication from the source using maximal ratio combining (MRC) and selection combining (SC). Closed-form upper and lower bounds on secrecy outage probability are derived. Closed-form approximate secrecy outage probability and ergodic secrecy rate is also obtained when source–relay link average signal-to-noise ratio (SNR) is high. Asymptotic analysis is presented when dual-hop links have equal or unequal average SNR. It is found that SC has both the secrecy outage and ergodic secrecy rate performances are better than MRC. To achieve the same secrecy outage performance of SC, MRC requires relatively higher SNR at lower rate. MRC also requires relatively higher SNR to achieve same secrecy rate performance of SC when eavesdropper link quality degrades. It is observed that lower bound for secrecy outage is tight and tends towards secrecy outage as SNR increases. It is interesting to find that either one of the dual-hop link can limit the performances even if the other link average SNR is infinitely high.

Keywords

Amplify-and-forward relay Asymptotic analysis Diversity combining Dual-hop system Secrecy capacity Secrecy outage probability 

References

  1. 1.
    Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1387. doi: 10.1002/j.1538-7305.1975.tb02040.x.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Gopala, P. K., Lai, L., & Gamal, H. E. (2008). On the secrecy capacity of fading channels. IEEE Transactions of Information Theory, 54(10), 4687–4698.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Liang, Y., Poor, H., et al. (2009). Information theoretic security. Foundations and Trends in Communications and Information Theory, 5(4–5), 355–580.zbMATHGoogle Scholar
  4. 4.
    Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. (2008). Wireless information-theoretic security. IEEE Transactions of Information Theory, 54(6), 2515–2534.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Barros, J., Rodrigues, M. R. D. (2006). Secrecy Capacity of Wireless Channels. InProceedings of the IEEE international symposium on information theory (ISIT) (pp. 356–360).Google Scholar
  6. 6.
    Csiszar, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions of Information Theory, 24(3), 339–348.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Luo, S., Li, J., & Petropulu, A. P. (2013). Uncoordinated cooperative jamming for secret communications. IEEE Transactions on Information Forensics and Security, 8(7), 1081–1090.CrossRefGoogle Scholar
  8. 8.
    Gerbracht, S., Scheunert, C., & Jorswieck, E. (2012). Secrecy outage in MISO systems with partial channel information. IEEE Transactions on Information Forensics and Security, 7(2), 704–716.CrossRefGoogle Scholar
  9. 9.
    Lai, L., & Gamal, H. E. (2008). The Relay–Eavesdropper channel: Cooperation for secrecy. IEEE Transactions of Information Theory, 54(9), 4005–4019.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Dong, L., Han, Z., Petropulu, A., & Poor, H. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactionns of Signal Processing, 58(3), 1875–1888.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Li, J., Petropulu, A., & Weber, S. (2011). On cooperative relaying schemes for wireless physical layer security. IEEE Transactionns of Signal Processing, 59(10), 4985–4997.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Krikidis, I. (2010). Opportunistic relay selection for cooperative networks with secrecy constraints. IET Communications, 4(15), 1787–1791.CrossRefGoogle Scholar
  13. 13.
    Krikidis, I., Thompson, J., & McLaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions of Wireless Communications, 8(10), 5003–5011.CrossRefGoogle Scholar
  14. 14.
    Zou, Y., Wang, X., & Shen, W. (2013). Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE Journal on Selected Areas in Communications, 31(10), 2099–2111.CrossRefGoogle Scholar
  15. 15.
    Bao, V. N. Q., & Trung, N. L. (2012). Multihop decode-and-forward relay networks: Secrecy analysis and relay position optimization. REV Journal on Electronics and Communications, 2(1–2), 33–41.Google Scholar
  16. 16.
    Jindal, A., Kundu, C., & Bose, R. (2014). Secrecy outage of dual-hop amplify-and-forward system and its application to relay selection. InProceedings of the IEEE 79th vehicular technology conference (VTC Spring).Google Scholar
  17. 17.
    Jindal, A., Kundu, C., & Bose, R. (2014). Secrecy outage of dual-hop af relay system with relay selection without eavesdropper’s CSI. IEEE Communications Letters, 18(10), 1759–1762.CrossRefGoogle Scholar
  18. 18.
    Hwang, K.-S., & Ju, M. (2014). Secrecy outage probability of amplify-and-forward transmission with multi-antenna relay in presence of eavesdropper. In Proceedings of the IEEE international conference on communications (ICC) (pp. 5408–5412).Google Scholar
  19. 19.
    Gabry, F., Salimi, S., Thobaben, R., & Skoglund, M. (2013). High SNR performance of amplify-and-forward relaying in Rayleigh fading wiretap channels. InProceedings of the Iran workshop on communication and information theory (IWCIT) (pp. 1–5).Google Scholar
  20. 20.
    Zou, Y., Zhu, J., Zheng, B., & Yao, Y.-D. (2010). An adaptive cooperation diversity scheme with best-relay selection in cognitive radio networks. IEEE Transactions of Signal Processing, 58(10), 5438–5445.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Proakis, J. (2001). Digital communications. New York: McGraw-Hill.zbMATHGoogle Scholar
  22. 22.
    Hasna, M. O., & Alouini, M.-S. (2003). Outage probability of multihop transmission over Nakagami fading channels. IEEE Communications Letters, 7(5), 216–218.CrossRefGoogle Scholar
  23. 23.
    Hasna, M. O., & Alouini, M.-S. (2004). Harmonic mean and end-to-end performance of transmission systems with relays. EEE Transactions on Communications, 52(1), 130–135.CrossRefGoogle Scholar
  24. 24.
    Karagiannidis, G., Tsiftsis, T., Mallik, R., Sagias, N., & Kotsopoulos, S. (2005). Closed-form bounds for multihop relayed communications in Nakagami-m fading. In Proceedings of the IEEE international conference on communications (ICC) (Vol. 4, pp. 2362–2366).Google Scholar
  25. 25.
    Karagiannidis, G., Tsiftsis, T., & Mallik, R. (2006). Bounds for multihop relayed communications in Nakagami-m fading. IEEE Transactions on Communications, 54(1), 18–22.CrossRefGoogle Scholar
  26. 26.
    Laneman, J., & Wornell, G. (2000). Energy-efficient antenna sharing and relaying for wireless networks. Proceedings of the IEEE Wireless Communications and Networking Confernce (WCNC)., 1, 7–12.CrossRefGoogle Scholar
  27. 27.
    Farhadi, G., & Beaulieu, N. (2009). On the ergodic capacity of multi-hop wireless relaying systems. IEEE Transactions on Wireless Communications, 8(5), 2286–2291.CrossRefGoogle Scholar
  28. 28.
    Simon, M. K., & Alouini, M.-S. (2000). Digital communication over fading channels. New York: Wiley.CrossRefGoogle Scholar
  29. 29.
    Papoulis, A., & Pillai, S. U. (2002). Probability, random variables and stochastic processes. New York: McGraw-Hill Book Company.Google Scholar
  30. 30.
    Akkouchi, M. (2008). On the convolution of exponential distributions. The Journal of Chungcheong Mathematical Society, 21(4), 501–510.Google Scholar
  31. 31.
    Prudnikov, A. P., Brychkov, Y., & Marichev, O. (1986). Integrals and series, volume 1: Elementary functions. New York: Gordon & Breach Science Publishers.zbMATHGoogle Scholar
  32. 32.
    Prudnikov, A. P., Brychkov, Y., & Marichev, O. (1986). Integrals and series, volume 2: Special functions. New York: Gordon & Breach Science Publishers.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Bharti School of Telecommunication Technology and Management, Indian Institute of TechnologyDelhiIndia
  2. 2.Department of Electrical EngineeringIndian Institute of TechnologyDelhiIndia

Personalised recommendations