Wireless Personal Communications

, Volume 97, Issue 1, pp 63–73 | Cite as

Modern Fisher–Yates Shuffling Based Random Interleaver Design for SCFDMA-IDMA Systems

  • Manish Yadav
  • Prateek Raj Gautam
  • Vinod Shokeen
  • Pramod Kumar Singhal


Random interleavers are the most preferred interleavers utilized in digital and cellular communication systems for burst errors control. Fisher–Yates shuffling algorithm and its several modified versions offer alternate techniques of generating random permutations popularly employed in the areas of computer programming, information theory and cryptography for data security purposes. In this short paper, Modern Fisher–Yates shuffling algorithm, also known as Durstenfeld’s algorithm, has been explored to generate random interleavers and further applied in single carrier frequency division multiple access based interleave division multiple access (SCFDMA-IDMA) systems. The results show that random interleavers generated by applying this algorithm are suitable enough to be employed in SCFDMA-IDMA system without compromising its performance.


Fisher–Yates shuffle Random interleaver SCFDMA-IDMA 


  1. 1.
    Ping, L., Liu, L., Wu, K., & Leung, W. K. (2006). Interleave-division multiple-access. IEEE Transactions on Wireless Communications, 5(4), 938–947.CrossRefGoogle Scholar
  2. 2.
    Wu, H., Ping, L., & Perotti, A. (2006). User specific chip-level interleaver design for IDMA system. IEEE Electronics Letters, 42(4), 233–234.CrossRefGoogle Scholar
  3. 3.
    Myung, H. G. (2007). Introduction to single carrier FDMA. In 2007 15th European signal processing conference (pp. 2144–2148), Poznan.Google Scholar
  4. 4.
    Xiong, X., & Luo, Z. (2011). SC-FDMA-IDMA: A hybrid multiple access scheme for LTE uplink. 2011 7th International conference on wireless communications, networking and mobile computing (pp. 1–5), Wuhan.Google Scholar
  5. 5.
    Yadav, S. P., & Bera, S. C. (2015). Single carrier FDMA technique for wireless communication system. In 2015 Annual IEEE India conference (INDICON) (pp. 1–6), New Delhi.Google Scholar
  6. 6.
    Fisher, R., & Yates, F. (1948). Statistical tables for biological, agricultural and medical research. In (3rd ed, pp. 26–27). London: Oliver and Boyd. http://www.worldcat.org/oclc/14222135.
  7. 7.
    Durstenfeld, R. (1964). Algorithm 235: Random permutation. Communications of the ACM, 7(7), 420.CrossRefGoogle Scholar
  8. 8.
    Knuth, D. E. (1969). Seminumerical algorithms. In The art of computer programming (2nd ed, vol. 2, pp. 124–125). Boston: Addison-Wesley. http://www.worldcat.org/oclc/85975465.
  9. 9.
    Wilson, M. C. (2005). Overview of Sattolo’s algorithm. In F. Chyzak (Ed.), Algorithm seminars 2002–2004 (pp. 105–108), INRIA.Google Scholar
  10. 10.
    Black, P. E. (2015). Fisher–Yates shuffle. In V. Pieterse, & P. E. Black, (Eds.), Dictionary of algorithms and data structures (online). Accessed November 15, 2016. http://www.nist.gov/dads/HTML/fisherYatesShuffle.html.
  11. 11.
    Yadav, M., & Banerjee, P. (2016). Bit error rate analysis of various interleavers for IDMA scheme. In 2016 3rd IEEE international conference on signal processing and integrated networks (SPIN) (pp. 89–94), Noida.Google Scholar
  12. 12.
    Tarable, A., Montorsi, G., & Benedetto, S. (2005). Analysis and design of interleavers for iterative multiuser receivers in coded CDMA systems. IEEE Transactions on Information Theory, 51(5), 1650–1666.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Blazek, Z., Gulliver, T. A., & Bhargava, V. K. On random interleavers for turbo codes. In IEEE Pacific rim conference (PACRIM, 2001) (vol. 1, pp. 363–366), Victoria, BC.Google Scholar
  14. 14.
    Kusume, K., & Bauch, G. (2008). Simple construction of multiple interleavers cyclically shifting a single interleaver. IEEE Transactions on Communications, 56(9), 1394–1397.CrossRefGoogle Scholar
  15. 15.
    Gupta, R., Kanaujia, B. K., Chauhan, R. C. S., & Shukla, M. Prime number based interleaver for multiuser iterative IDMA systems. In Proceedings of the 2004, IEEE international conf. computational intelligence and communication networks (CICN, 2010) (pp. 603–607), Bhopal.Google Scholar
  16. 16.
    Gui, X., & Ng, T. S. (2000). A novel chip-interleaving DS-SS system. IEEE Transactions on Vehicular Technology, 49, 21–27.CrossRefGoogle Scholar
  17. 17.
    Shukla, M., Srivastava, V. K., & Tiwari, S. (2008). Analysis and design of tree based interleavers for multiuser receivers in IDMA scheme. In 2008, IEEE international conference on networks (ICON’2008) (pp. 1–4), Delhi.Google Scholar
  18. 18.
    Hokfelt, J., Edfors, O., & Maseng, T. Interleaver design for turbo codes based on performance of iterative decoding. In 1999, IEEE (ICC’ 99), Vancouver, Canada.Google Scholar
  19. 19.
    Dixit, S., Patel, A., & Shukla, M. (2015). Interleavers and SC-FDMA-IDMA scheme. In 2015, IET conference on advances in electrical and information communication technology (AEICT-2015) (pp. 25–31), Kanpur.Google Scholar
  20. 20.
    Yuan, J., Vucetic, B., Feng, W., & Tan, M. (2001). Design of cyclic shift interleavers for turbo codes. Annals of Telecommunications, 56(7–8), 384–393.Google Scholar
  21. 21.
    Koutsouvelis, K. V., & Dimakis, C. E. (2008). A low complexity algorithm for generating turbo code s-random interleavers. Wireless Personal Communications, 46, 365–370.CrossRefGoogle Scholar
  22. 22.
    Weber, T., Oster, J., Weckerle, M., & Baier, P. W. (2002). Turbo multiuser detection for TC-CDMA. AEÜ International Journal of Electronics and Communications, 56(2), 120–130.CrossRefGoogle Scholar
  23. 23.
    Dolinar, S., & Divsalar, D. (1995). Weight distribution for turbo codes using random and non-random permutations. In Technical report TDA progress report (pp. 42–121), JPL.Google Scholar
  24. 24.
    Ramsey, J. L. (1970). Realization of optimum interleavers. IEEE Transactions on Information Theory, 16(3), 338–345.CrossRefMATHGoogle Scholar
  25. 25.
    Berrou, C., & Glavieux, A. (1996). Near optimum error correcting coding and decoding: turbo codes. IEEE Transactions on Communications, 44, 1261–1271.CrossRefGoogle Scholar
  26. 26.
    Sadjadpour, H. R., Sloane, N. J. A., Salehi, M., & Nebe, G. (2001). Interleaver design for turbo codes. IEEE Journal on Selected Areas in Communications, 19(5), 831–837.CrossRefGoogle Scholar
  27. 27.
    Brink, S. T. (2000). Designing iterative decoding schemes with the extrinsic information transfer chart. International Journal of Electronics and Communications, 54(6), 389–398.Google Scholar
  28. 28.
    Berrou, C., Glavieux, A., & Thitimajshima, P. (1993). Near Shannon limit error correcting coding and decoding: Turbo codes. In International conference on communications (ICC’93) (pp. 1064–1070).Google Scholar
  29. 29.
    Yadav, M., Shokeen, V., & Singhal, P. K. (2016). BER versus BSNR analysis of conventional IDMA and OFDM-IDMA based systems with tree interleaving. In 2nd IEEE international conference on advances in computing, communication & automation-fall (ICACCA-Fall’16) (pp. 1–6), Bareilly.Google Scholar
  30. 30.
    Balta, H., & Kovaci, M. (2004). The BER performance of convolution codes used in turbo codes. In Scientific bulletin of the “Politechnica” University of Timisoara (pp. 38–43), Romania.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Electronics and Communication Engineering, Amity School of Engineering and Technology/Amity School of EngineeringAmity UniversityNoidaIndia
  2. 2.Department of Electronics and Communication EngineeringMotilal Nehru National Institute of TechnologyAllahabadIndia
  3. 3.Department of Electronics EngineeringMadhav Institute of Technology and Science (MITS)GwaliorIndia

Personalised recommendations