Advertisement

Wireless Personal Communications

, Volume 96, Issue 2, pp 2943–2963 | Cite as

Deployment of Resource Allocation and Power Control Schemes in Long Term Evolution Advanced (LTE-A) Hybrid Network

  • Jing Huey LimEmail author
  • Badlishah Ahmad
  • Muzammil Jusoh
  • Thennarasan Sabapathy
Article
  • 164 Downloads

Abstract

Long Term Evolution Advanced (LTE-A) Hybrid network integrates Femtocell and Macrocell networks to obtain better coverage and improved capacity. One of the limiting factors faced by Hybrid network is Inter-Cell Interference (ICI). One way to get rid of the ICI is through Inter-Cell Interference coordination technique. In the last few years, interference coordination such as Fractional Frequency Reuse (FFR) technique is considered as the utmost important research topic in LTE cellular technology. This paper revisited FFR method and deployed Dynamic Femtocell Resource Allocation (DFRA) scheme to ensure the resources assigned to Femtocells are mutually exclusive with adjacent Macrousers or adjacent Femtocells. Furthermore, in the scenario of high density Femtocells (when orthogonal resource exhausted), the power control schemes such as Power based Femtocell Base Station Power Control (PPC), SINR based Femtocell Base Station Power Control (SPC) and SINR based Neighboring Femtocell Power Control (SNPC) are integrated into the system. The deployment of the schemes has augmented the performance of the network and shows increment of 11.43% supported active users with an average data rate inclined by 22.19 Mbps.

Keywords

Long term evolution advanced (LTE-A) Femtocell Fractional frequency reuse (FFR) Inter-cell interference (ICI) 

References

  1. 1.
    Saleh, A. A., & Roman, R. S. (1987). Distributed antennas for indoor radio communications. IEEE Transactions on Communications, 35(12), 1245–1251.CrossRefGoogle Scholar
  2. 2.
    Jeanette Wannstrom, masterltefaster.com and Keith Mallinson, WiseHarbor, HetNet/Small Cells 3GPP. http://www.3gpp.org/technologies/keywords-acronyms/1576-hetnet.
  3. 3.
    Bilios, D., Bouras, C., Diles, G., Kokkinos, V., Papazois, A., & Tseliou, G. (2014). A simulation framework for the evaluation of frequency reuse in LTE-A systems. International Journal of Wireless Networks and Broadband Technologies (IJWNBT), 3(2), 56–83.CrossRefGoogle Scholar
  4. 4.
    Bilios, D., Bouras, C., Kokkinos, V., Papazois, A., & Tseliou, G. (2012). A performance study of fractional frequency reuse in OFDMA networks. In 2012 5th Joint IFIP wireless and mobile networking conference (WMNC) (pp. 38–43). IEEE.Google Scholar
  5. 5.
    Valcarce, A., Lucas, M., & López-Pérez, D. (2012). In-cabin downlink cell planning with fractional frequency reuse. In European wireless, 2012. EW. 18th European wireless conference (pp. 1–5). VDE.Google Scholar
  6. 6.
    Novlan, T., Andrews, J. G., Sohn, I., Ganti, R. K., & Ghosh, A. (2010). Comparison of fractional frequency reuse approaches in the OFDMA cellular downlink. In Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE (pp. 1–5). IEEE.Google Scholar
  7. 7.
    Novlan, T. D., Ganti, R. K., Ghosh, A., & Andrews, J. G. (2011). Analytical evaluation of fractional frequency reuse for OFDMA cellular networks. IEEE Transactions on Wireless Communications, 10(12), 4294–4305.CrossRefGoogle Scholar
  8. 8.
    Hamouda, S., Yeh, C., Kim, J., Wooram, S., & Kwon, D. S. (2009). Dynamic hard fractional frequency reuse for mobile WiMAX. In IEEE international conference on pervasive computing and communications PerCom 2009 (pp. 1–6). IEEE.Google Scholar
  9. 9.
    Da Costa, G. W. O., Cattoni, A. F., Mogensen, P. E., & Da Silva, L. A. (2015). Dynamic channel selection for cognitive femtocells. In M.-G. Di Benedetto, et al. (Eds.), Cognitive radio and networking for heterogeneous wireless networks (pp. 151–180). Switzerland: Springer.Google Scholar
  10. 10.
    Lee, P., Lee, T., Jeong, J., & Shin, J. (2010). Interference management in LTE femtocell systems using fractional frequency reuse. In 2010 The 12th international conference on advanced communication technology (ICACT) (Vol. 2, pp. 1047–1051). IEEE.Google Scholar
  11. 11.
    Bouras, C., Kavourgias, G., Kokkinos, V., & Papazois, A. (2012). Interference management in LTE femtocell systems using an adaptive frequency reuse scheme. In Wireless telecommunications symposium (WTS) 2012 (pp. 1–7). IEEE.Google Scholar
  12. 12.
    Bouras, C., Diles, G., Kokkinos, V., & Papazois, A. (2012). Power management over co-channel femtocells in LTE-A systems. In Wireless Days (WD), 2012 IFIP (pp. 1–3). IEEE.Google Scholar
  13. 13.
    3GPP. (2016). Evolved universal terrestrial radio access (E-UTRA): Physical channels and modulation. Technical report 36.211 v13.0.0.Google Scholar
  14. 14.
    So-In, C., Jain, R., & Al-Tamimi, A. K. (2010). Resource allocation in IEEE 802.16 mobile WiMAX. In T. Jiang, L. Y. Song, & Y. Zhang (Eds.), Orthogonal frequency division multiple access (OFDMA). United States: Auerbach Publications, CRC Press.Google Scholar
  15. 15.
    (2012). Mobile network operator challenges. Retrieved March 14, 2015, from http://www.iet.ntnu.no/workshop/SNOW2012/presentations/lehne.pdf.
  16. 16.
    Boddu, S. R., Mukhopadhyay, A., Philip, B. V., & Das, S. S. (2013). Bandwidth partitioning and SINR threshold design analysis of fractional frequency reuse. Paper presented at the National conference on communications (NCC), 2013.Google Scholar
  17. 17.
    ITU-R M.2135-1. (2009). Guidelines for evaluation of radio interface technologies for IMT-advanced. Geneva, Switzerland, Report ITU-R M.2135-1.Google Scholar
  18. 18.
    3GPP (2010). Evolved universal terrestrial radio access (E-UTRA): Further advancements for E-UTRA physical layer aspects. Technical report 36.814 v9.0.0.Google Scholar
  19. 19.
    Lim, J. H., Ahmed, R. B., Mohammad, J., Sabapathy, T. (2015). Optimization fractional frequency scheme in long term evolution network. In MUCET conference system, Malaysian Technical Universities conference on engineering and technology, 2015.Google Scholar
  20. 20.
    Shabbir, N., et al. (2011). Comparison of radio propagation models for long term evolution (LTE) network. International Journal of Next-Generation Networks (IJNGN), 3(3), 27–41.CrossRefGoogle Scholar
  21. 21.
    Rappaport, T. S. (1996). Wireless communications: Principles and practice (Vol. 2). New Jersey: Prentice Hall PTR.zbMATHGoogle Scholar
  22. 22.
    Ghosh, A., & Ratasuk, R. (2011). Essentials of LTE and LTE-A. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Computer and Communication EngineeringUniversiti Malaysia Perlis (UniMAP)ArauMalaysia
  2. 2.Bioelectromagnetics Research Group (BioEM), School of Computer and Communication EngineeringUniversiti Malaysia Perlis (UniMAP)ArauMalaysia
  3. 3.Research and Innovation, School of Computer Engineering, Communication Engineering, Electronic EngineeringUniversiti Sultan Zainal Abidin (UniSZA)Kuala TerengganuMalaysia

Personalised recommendations