Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

An Approach to Defend Global Eavesdropper in Sensor Networks

  • 106 Accesses

  • 1 Citations

Abstract

The wireless sensor networks are used in tracking and monitoring objects. Owing to the wireless nature of communication, the adversary eavesdrops and back traces the origin of the message. The detection of source location information threatens the source node as well as the monitored object and reduces the functionality of the network. Existing approaches hide the location of the source node with fake packets, which is not a cost effective solution for resource-limited sensor networks. Therefore in this work, virtual source-α approach prevents the adversaries from tracing the source location. The virtual source-α approach is based on virtual source based approach which efficiently handles the realistic global eavesdropper. The performance of this approach is compared with the periodic collection and the source simulation approach with respect to the network and source location privacy. The simulation results show that virtual source-α approach performs better than the existing approaches.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Conti, M., Willemsen, J., & Crispo, B. (2013). Providing source location privacy in wireless sensor networks: A survey. IEEE Communications Surveys Tutorials, 15(3), 1238–1280.

  2. 2.

    Rios, R., & Lopez, J. (2011). Analysis of location privacy solutions in wireless sensor networks. IET Communications, 5(17), 2518–2532.

  3. 3.

    Uluagac, A. S., Beyah, R. A., Li, Y., & Copeland, J. A. (2010). Vebek: Virtual energy-based encryption and keying for wireless sensor networks. IEEE Transaction on Mobile Computing, 7(7), 994–1007.

  4. 4.

    Ozturk, C., Zhang, Y., & Trappe, W. (2004). Source-location privacy in energy-constrained sensor network routing. In Proceedings of the 2nd ACM workshop on security of ad hoc and sensor networks (pp. 88–93). New York: ACM.

  5. 5.

    Kamat, P., Zhang. Y., Trappe, W., Ozturk, C. (2005). Enhancing source-location privacy in sensor network routing. In Proceedings of the 25th IEEE international conference on distributed computing systems (pp. 599–608). Coloumbus, OH.

  6. 6.

    Mehta, K., Liu, D., & Wright, M. (2007). Location privacy in sensor networks against a global eavesdropper. In Proceedings of IEEE international conference on network protocols (pp. 314–323). Beijing: ICNP.

  7. 7.

    Kelly, D., Raines, R., Baldwin, R., Grimaila, M., & Mullins, B. (2012). Exploring extant and emerging issues in anonymous networks: A taxonomy and survey of protocols and metrics. IEEE Communications Surveys Tutorials, 14(2), 579–606.

  8. 8.

    Mehta, K., Liu, D., & Wright, M. (2012). Protecting location privacy in sensor networks against a global eavesdropper. IEEE Transactions on Mobile Computing, 11(2), 320–336.

  9. 9.

    Seo, S. H., Won, J., Sultana, S., & Bertino, E. (2015). Effective key management in dynamic wireless sensor networks. IEEE Transactions on Information Forensics and Security, 10(2), 371–383.

  10. 10.

    Soosahabi, R., Naraghi-Pour, M., Perkins, D., & Bayoumi, M. (2014). Optimal probabilistic encryption for secure detection in wireless sensor networks. IEEE Transactions on Information Forensics and Security, 9(3), 375–385.

  11. 11.

    Lee, S., & Kim, K. (2015). Key renewal scheme with sensor authentication under clustered wireless sensor networks. Electronics Letters, 51(4), 368–369.

  12. 12.

    Long, J., Dong, M., Ota, K., & Liu, A. (2014). Achieving source location privacy and network lifetime maximization through tree-based diversionary routing in wireless sensor networks. IEEE Access, 2, 633–651.

  13. 13.

    Wei-Ping, W., Liang, C., & Jian-Xin, W. (2008). A source-location privacy protocol in wsn based on locational angle. In Proceedings of IEEE international conference on communications (pp. 1630–1634). Beijing: IEEE.

  14. 14.

    Zhang, L. (2006). A self-adjusting directed random walk approach for enhancing source-location privacy in sensor network routing. In Proceedings of 2006 international conference on wireless communications and mobile computing (pp. 33–38). New York: ACM.

  15. 15.

    Spachos, P., Song, L., Hatzinakos, D. (2010). Opportunistic routing for enhanced source-location privacy in wireless sensor networks. In Proceedings of 25th biennial symposium on communications (pp. 315–318). Kingston, ON.

  16. 16.

    Spachos, P., Song, L., Bui, F., & Hatzinakos, D. (2011). Improving sourcelocation privacy through opportunistic routing in wireless sensor networks. In Proceedings of IEEE symposium on computers and communications (pp. 815–820). Kerkyra.

  17. 17.

    Yang, Y., Shao, M., Zhu, S., Urgaonkar, B., & Cao, G. (2008). Towards event source unobservability with minimum network traffic in sensor networks. In Proceedings of the 1st ACM conference on wireless network security—WiSec ‘08 (pp. 77–88).

  18. 18.

    Shao, M., Yang, Y., Zhu, S., & Cao, G. (2008). Towards statistically strong source anonymity for sensor networks. In Proceedings of 27th conference on computer communications (pp. 51–55). Phoenix, AZ.

  19. 19.

    Wang, H., Sheng, B., & Li, Q. (2009). Privacy-aware routing in sensor networks. Computer Networks, 53(9), 1512–1529.

  20. 20.

    Raj, M., Li, N., Liu, D., Wright, M., & Das, S. K. (2014). Using data mules to preserve source location privacy in wireless sensor networks. Pervasive and Mobile Computing, 11, 244–260.

  21. 21.

    Tan, W., Xu, K., & Wang, D. (2014). An anti-tracking source-location privacy protection protocol in wsns based on path extension. IEEE Internet of Things Journal, 1(5), 461–471.

  22. 22.

    Altis, R. R., & Valli, S. (2015). Virtual source based location privacy for wireless sensor networks. IETE Journal of Research, 61(5), 475–481.

  23. 23.

    iSense modular wirless senor network tool box. (2011). https://www.ncsin.com/index.php?option=com=contentview=articleid=82Itemid=489. Accessed: 11 Jan 2015.

  24. 24.

    OmNet++. (2013). http://omnetpp.org/omnetpp.htm. Accessed: 13 Sep 2014.

  25. 25.

    iSense modular wirless senor network tool box. (2011). https://www.ncsin.com/index.php?option=com_contentview=articleid=82Itemid=489. Accessed 1 Nov 2015.

  26. 26.

    Zheng, J., Wang, P., & Li, C. (2010). Distributed data aggregation using slepian wolf coding in cluster-based wireless sensor networks. IEEETransactions on Vehicular Technology, 59(5), 2564–2574.

  27. 27.

    Nagarathna, Valli, S., & Manjunath, D. (2014). A spatio-temporal model for estimation and effecient tracking of dynamic boundaries. In 20th national conference on communications (NCC) (pp. 1–6). Kanpur.

  28. 28.

    Ho, J. W., Wright, M., & Das, S. (2012). Zonetrust: Fast zone-based node compromise detection and revocation in wireless sensor networks using sequential hypothesis testing. IEEE Transactions on Dependable and Secure Computing, 9(4), 494–511.

Download references

Author information

Correspondence to R. Altis Raja.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Altis Raja, R., Valli, S. An Approach to Defend Global Eavesdropper in Sensor Networks. Wireless Pers Commun 96, 2761–2777 (2017). https://doi.org/10.1007/s11277-017-4323-z

Download citation

Keywords

  • Location privacy
  • Object monitoring
  • Virtual source
  • Packet tracing
  • Traffic analysis
  • Global eavesdropper