Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evaluation of Electromagnetic Interference in Wireless Broadband Systems

  • 183 Accesses

  • 3 Citations

Abstract

Nowadays, the electromagnetic compatibility in radio frequency communication systems attracts a great attention as the wireless spectrum becomes overcrowded. A lot of wireless systems operate in the same bands or in the adjacent frequency ones. This operation results in an electromagnetic interference (EMI) among these systems. This EMI can degrade the performance of the wireless systems. Moreover, critical medical equipment, which is near to an electromagnetic radiation field, may be malfunction. A lot of studies handled the EMI phenomenon in radio systems. These studies range from the definition and the causes of the phenomenon to the development of suitable simulation tools for evaluating the EMI value. This paper handles the effect of the EMI existence on the performance of a broadband communication system in a complex radio environment. Moreover, this performance is clarified in a form of bit error rate. In addition, the complex radio environment is modeled as a summation of noise, narrow band interference (NBI), and ultra wide band interference (UWBI). The complete analysis model of a broadband radio system, which is interfered by a NBI and an UWBI, is carried out. Furthermore, the total interfering power is derived in a novel closed form formula. Finally, the performance of the system is simulated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Changlin, Z., Zhan, Z., Xuebing, Q., Hongtao, Y., & Weidong, Z. (2008). Research on the electromagnetic environment effect on wireless communication systems. In 8th International symposium on antennas, propagation, and EM theory (pp. 1478–1481). Kunming: IEEE. doi:10.1109/ISAPE.2008.4735510.

  2. 2.

    Kaur, M., Kakar, S., & Mandal, D. (2011). Electromagnetic interference, In 3rd International conference on electronics computer technology (pp. 1–5). Kanyakumari: IEEE. doi:10.1109/ICECTECH.2011.5941844.

  3. 3.

    Lapinsky, S. E., & Easty, A. C. (2006). Electromagnetic interference in critical care. Journal of Critical Care, 21(3), 267–270.

  4. 4.

    Loyka, S. (2001). EMC/EMI analysis in wireless communication networks. In International symposium on electromagnetic compatibility (Cat. No.01CH37161) (pp. 100–105). Montreal, QC: IEEE. doi:10.1109/ISEMC.2001.950551.

  5. 5.

    German, F., Young, M., & Miller, M. C. (2009). A multi-fidelity modelling approach for cosite interference analysis. In International symposium on electromagnetic compatibility (pp. 195–200). Austin, TX: IEEE. doi:10.1109/ISEMC.2009.5284586.

  6. 6.

    Young, M., Miller, M., & German, F. (2010). An automated measurement system for cosite interference analysis. In International symposium on electromagnetic compatibility (pp. 863–868). Fort Lauderdale: IEEE. doi:10.1109/ISEMC.2010.5711393.

  7. 7.

    German, F., Annamalai, K., Young, M., & Miller, M. C. (2010). Simulation and data management for cosite interference prediction. In International symposium on electromagnetic compatibility (pp. 869–874). Fort Lauderdale: IEEE. doi:10.1109/ISEMC.2010.5711394.

  8. 8.

    Neji, N., Lacerda, R. D., Azoulay, A., Letertre, T., & Outtier, O. (2009). Interference analysis for the future aeronautical communication system. In 20th International symposium on personal, indoor, and mobile radio communications (pp. 1236–1240). Tokyo: IEEE. doi:10.1109/PIMRC.2009.5450049.

  9. 9.

    Mleczko, M., Fisahn, S., &Garbe, H. (2012). Measurements of EMI signals on radio links based on commercial off-the-shelf wireless devices. In International symposium on electromagnetic compatibilityEMC, IEEE, EUROPE, Rome (pp. 1–5). doi:10.1109/EMCEurope.2012.6396787.

  10. 10.

    Bui, V. P., Zhao, W. J., Wang, B. F., & Li, E. P. (2012). A hybrid technique for EMI prediction and channel modeling inside an enclosed space. In AsiaPacific symposium on electromagnetic compatibility (pp. 793–796). Singapore: IEEE. doi:10.1109/APEMC.2012.6238013.

  11. 11.

    Mleczko, M., Hamann, D., & Garbe, H. (2015). Analysis of IEMI induced distortion on wireless digital data transmission links. In AsiaPacific symposium on electromagnetic compatibility (APEMC) (pp. 1–4). Taipei: IEEE. doi:10.1109/APEMC.2015.7446233.

  12. 12.

    Hruska, F., & Navratil, M. (2016). Electromagnetic compatibility and power-line quality. In 10th International conference on emerging security information, systems, and technologies, SECURWARE (pp. 206–210).

  13. 13.

    Matig-a, G., Yuce, M. R., & Redouté, J. M. (2016). EMI susceptibility of high speed differential wireline communication front-ends. In International symposium on electromagnetic compatibilityEMC, IEEE, EUROPE, Wroclaw (pp. 382–387). doi:10.1109/EMCEurope.2016.7739211.

  14. 14.

    Beek, S. V. D., & Leferink, F. (2015). Robustness of a TETRA base station receiver against intentional EMI. IEEE Transactions on Electromagnetic Compatibility, 57(3), 461–469. doi:10.1109/TEMC.2015.2406732.

  15. 15.

    Hwang, J. H., Kang, T. W., Kwon, J. H., & Park, S. O. (2017). Effect of electromagnetic interference on human body communication. IEEE Transactions on Electromagnetic Compatibility, 59(1), 48–57. doi:10.1109/TEMC.2016.2598582.

  16. 16.

    Pande, D. C. (1999). Ultra wide band (UWB) systems and their implications to electromagnetic environment. In Proceedings of the international conference on electromagnetic interference and compatibility (pp. 50–57). doi:10.1109/ICEMIC.1999.871595.

  17. 17.

    Shongwe, T., Papilaya, V. N., & Vinck, A. J. H. (2013). Narrow-band interference model for OFDM systems for powerline communications. In 17th international symposium on power line communications and its applications (pp. 268–272). Johannesburg: IEEE. doi:10.1109/ISPLC.2013.6525862.

  18. 18.

    Ouyang, Y., Lin, W. P., & Liu, C. C. (2015). Performance analysis of the multiband orthogonal frequency division multiplexing ultra-wideband systems for multipath fading and multiuser interference channels. Mathematical Problems in Engineering, 2015, 1–9. doi:10.1155/2015/190809.

  19. 19.

    Molisch, A. F., Balakrishnan, K., Cassioli, D., Chong, C. C., Emami, S., Fort, A., et al. (2004). IEEE 802.15. 4a channel model-final report. In IEEE P802 (Vol. 15, No. 04, pp. 1–40).

Download references

Author information

Correspondence to Mohamed Shalaby.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shalaby, M., Saad, W., Shokair, M. et al. Evaluation of Electromagnetic Interference in Wireless Broadband Systems. Wireless Pers Commun 96, 2223–2237 (2017). https://doi.org/10.1007/s11277-017-4294-0

Download citation

Keywords

  • EMI
  • Broadband Systems
  • BER
  • NBI
  • UWBI