Advertisement

Wireless Personal Communications

, Volume 96, Issue 1, pp 1277–1298 | Cite as

Particle Filtering for Joint Symbol Detection, Frequency Offset and Channel Estimation in Time-Varying MIMO Channels with Multiple Frequency Offsets

  • Yihua Yu
Article
  • 72 Downloads

Abstract

We develop three methods for the joint symbol detection, frequency offset and channel estimation in time-varying multiple-input multiple-output channels with multiple frequency offsets between transmit and receive antennas. These methods are based on particle filtering. The first method utilizes the posterior proposal distribution (PD) to generate particles, which is optimal PD because it minimizes the variance of the importance weights, conditionally on the observations and past particles. Second, we develop an improved sampling strategy, which exploits the discrete nature of the symbol variable. The improved sampling strategy has same computational complexity as the posterior PD, while its performance is significantly improved. Finally, we derive a suboptimal complexity-reduced method, which utilizes the artificial sequential structure of the Bell-Labs layered space–time detection scheme to compress the sample space of symbol variable. Compared to the posterior PD, the computational complexity of the suboptimal method is largely reduced, while it still significantly outperforms the posterior PD. Simulation results are provided to illustrate the performance of these methods.

Keywords

Channel estimation Frequency offset Multi-input multi-output (MIMO) Particle filter Symbol detection 

References

  1. 1.
    Foschini, G. J., & Gans, M. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 45(1), 311–335.CrossRefGoogle Scholar
  2. 2.
    Besson, O., & Stoica, P. (2003). On parameter estimation of MIMO flat fading channels with frequency offsets. IEEE Transactions on Signal Processing, 51(3), 602–613.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Pham, T., Nallanathan, A., & Liang, Y. (2008). Joint channel and frequency offset estimation in distributed MIMO flat-fading channels. IEEE Transactions on Wireless Communications, 7(2), 648–656.CrossRefGoogle Scholar
  4. 4.
    Tian, Y., Lei, X., Xiao, Y., & Li, S. (2010). SAGE based joint timing-frequency offsets and channel estimation in distributed MIMO systems. Computer Communications, 33, 2125–2131.CrossRefGoogle Scholar
  5. 5.
    Zhang, J., Zheng, Y. R., Xiao, C., & Letaief, K. B. (2010). Channel equalization and symbol detection for single-carrier MIMO systems in the presence of multiple carrier frequency offsets. IEEE Transactions on Vehicular Technology, 59(4), 2021–2030.CrossRefGoogle Scholar
  6. 6.
    Jamalabdollahi, M., & Salari, S. (2013). RLS-based estimation and tracking of frequency offset and channel coefficients in MIMO-OFDM systems. Wireless Personal Communications, 71(2), 1159–1174.CrossRefGoogle Scholar
  7. 7.
    Luo, R., Yang, J., & Li, R. (2015). A new timing and frequency synchronization algorithm for distributed MIMO-OFDM systems. Wireless Personal Communications, 82(3), 1685–1696.CrossRefGoogle Scholar
  8. 8.
    Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188.CrossRefGoogle Scholar
  9. 9.
    Cappé, O., Godsill, S. J., & Moulines, E. (2007). An overview of existing methods and recent advances in sequential Monte Carlo. Proceedings of the IEEE, 95(5), 899–924.CrossRefGoogle Scholar
  10. 10.
    Chen, R., Wang, X., & Liu, J. S. (2000). Adaptive joint detection and decoding in flat-fading channels via Mixture Kalman filtering. IEEE Transactions on Information Theory, 46(6), 2079–2094.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Komninakis, C., Fragouli, C., Sayeed, A. H., & Wesel, R. D. (2002). Multi-input multi-output fading channel tracking and equalization using Kalman estimation. IEEE Transactions on Signal Processing, 50(5), 1065–1076.CrossRefGoogle Scholar
  12. 12.
    Roman, T., Enescu, M., & Koivunen, V. (2004). Joint time-domain tracking of channel and frequency offsets for MIMO-OFDM systems. Wireless Personal Communications, 31, 181–200.CrossRefGoogle Scholar
  13. 13.
    Kim, K. J., Pun, M., & Iltis, R. A. (2010). Joint carrier frequency offset and channel estimation for uplink MIMO-OFDMA systems using parallel Schmidt Rao-Blackwellized particle filters. IEEE Transactions on Communications, 58(9), 2697–2708.CrossRefGoogle Scholar
  14. 14.
    Simon, E. P., Ros, L., Hijazi, H., Fang, J., Gaillot, D. P., & Berbineau, M. (2011). Joint carrier frequency offset and fast time-varying channel estimation for MIMO-OFDM systems. IEEE Transactions on Vehicular Technology, 60(3), 955–965.CrossRefGoogle Scholar
  15. 15.
    Vázquez, M. A., Bugallo, M. F., & Míguez, J. (2008). Sequential Monte Carlo methods for the complexity-constrained MAP equalization of dispersive MIMO channels. Signal Processing, 88, 1017–1034.CrossRefMATHGoogle Scholar
  16. 16.
    Han, Y. (2012). A Rao-Blackwellized particle filter for adaptive beamforming with strong interference. IEEE Transactions on Signal Processing, 60(6), 2952–2961.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hlinka, O., Hlawatsch, F., & Djurić, P. M. (2013). Distributed particle filtering in agent networks: A survey, classification, and comparison. IEEE Signal Processing Magazine, 30, 61–81.CrossRefGoogle Scholar
  18. 18.
    Berntorp, K., Robertsson, A., & Årzén, K. (2014). Rao-Blackwellized particle filters with out-of-sequence measurement processing. IEEE Transactions on Signal Processing, 62(24), 6454–6467.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Petetin, Y., & Desbouvries, F. (2015). Bayesian conditional Monte Carlo algorithms for nonlinear time-series state estimation. IEEE Transactions on Signal Processing, 63(14), 3586–3598.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhou, L., Li, G., Zheng, Z., & Xiao, T. (2015). A trust region-based particle filter algorithm for indoor tracking. Wireless Personal Communications, 80(2), 739–750.CrossRefGoogle Scholar
  21. 21.
    Huang, Y., Zhang, J., & Djurić, P. M. (2005). Bayesian detection for BLAST. IEEE Transactions on Signal Processing, 53(3), 1086–1096.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Dong, B., Wang, X., & Doucet, A. (2003). A new class of soft MIMO demodulation algorithms. IEEE Transactions on Signal Processing, 51(11), 2752–2763.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Jakes, W. C. (1974). Microwave mobile communications. New York: Wiley.Google Scholar
  24. 24.
    Baddour, K. E., & Beaulieu, N. C. (2005). Autoregressive modeling for fading channel simulation. IEEE Transactions on Wireless Communications, 4(4), 1650–1662.CrossRefGoogle Scholar
  25. 25.
    Yu, Y., & Cheng, Q. (2006). Particle filters for maneuvering target tracking problem. Signal Processing, 86, 195–203.CrossRefMATHGoogle Scholar
  26. 26.
    Li, T., Bolić, M., & Djurić, P. M. (2015). Resampling methods for particle filtering. IEEE Signal Processing Magazine, 32, 70–86.CrossRefGoogle Scholar
  27. 27.
    Omura, J. (1969). On the Viterbi decoding algorithm. IEEE Transactions on Information Theory, 15, 177–179.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of ScienceBeijing University of Posts and TelecommunicationsBeijingPeople’s Republic of China

Personalised recommendations