Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A 1-V 2.4 GHz Low-Power CMOS LNA Using Gain-Boosting and Derivative Superposition Techniques for WSN

Abstract

In the literature, for Zigbee receivers using cascode LNAs, a number of techniques such as gain-boosting, derivative superposition technique and forward body bias have been proposed individually for improving the gain, linearity and reducing the power dissipation of the LNA respectively. In this paper, a cascode LNA which combines all the three techniques is proposed. To study the efficacy of combining the three techniques, the proposed LNA is designed in UMC 0.18-µm standard CMOS process with the supply voltage of 1.0 V and studied through post-layout simulation at 2.4 GHz ISM band. The LNA which combines all the three techniques is found to be superior compared to the LNAs which use only two of the above techniques. This LNA also has better gain (25.63 dB), better linearity (5.8 dBm) and better figure of merits at the cost of marginal increase in the noise figure (2.45 dB) and power dissipation (2.77 mW) compared to the LNAs reported in the literature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Change history

  • 15 June 2017

    An erratum to this article has been published.

References

  1. 1.

    Kluge, W., Poegel, F., Roller, H., Lange, M., Ferchland, T., Dathe, L., et al. (2006). A fully integrated 2.4-GHz IEEE 802.15.4-compliant transceiver for ZigBee™ applications. IEEE Journal of Solid-State Circuits, 41(12), 2767–2775.

  2. 2.

    Song, T., Oh, H. S., Yoon, E., & Hong, S. (2007). A low-power 2.4-GHz current-reused receiver front-end and frequency source for wireless sensor network. IEEE Journal of Solid-State Circuits, 42(5), 1012–1022.

  3. 3.

    Javadi, M., Sheikhaei, S., Kashi, A. S., & Pourmodheji, H. (2013). Design of a direct conversion ultra low power ZigBee receiver RF front-end for wireless sensor networks. Elsevier Microelectronics Journal, 44, 347–353.

  4. 4.

    Lee, S.Y., Wang, L.H., Chen, T.Y., & Yu, C.T. (2012). A low-power RF front-end with merged LNA, differential power splitter, and quadrature mixer for IEEE 802.15.4 (ZigBee) applications. In IEEE RFIC Symposium, pp. 1492–1495.

  5. 5.

    Hsieh, H. H., Wang, J. H., & Lu, L. H. (2008). Gain-enhancement techniques for CMOS folded cascode LNAs at low-voltage operations. IEEE Transactions on Microwave Theory and Techniques, 56(8), 1807–1816.

  6. 6.

    Mou, S., Ma, J. G., Yeo, K. S., & Do, M. A. (2005). A modified architecture used for input matching in CMOS low-noise amplifiers. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(11), 784–788.

  7. 7.

    Tran, T. T. N., Boon, C. C., Do, M. A., & Yeo, K. S. (2011). A 2.4 GHz ultra low-power high gain LNA utilizing π-match and capacitive feedback input network. In IEEE International Midwest Symposium on Circuits and Systems (MWSCAS-2011), pp. 1–4.

  8. 8.

    Razavi, B. (2001). Design of analog CMOS integrated circuits. New York: McGraw-Hill.

  9. 9.

    Hong, Y. J., Wang, S. F., Chen, P. T., Hwang, Y. S., & Chen, J. J. (2015). A concurrent dual band 2.4/5.8 GHz LNA using gain enhanced techniques. In Proceedings of Asia-Pacific symposium on electromagnetic compatibility (APEMC), pp. 231–234.

  10. 10.

    Park, C. W., Ahn, Y., Lee, J., & Jeong, J. (2010). Linearity improvement of cascode low-noise amplifiers using double DS method with a tuned inductor. Taylor and Francis International Journal of Electronics, 97(7), 847–855.

  11. 11.

    Zhang, Z., Khan, M., Dinh, A., & Chen, L. (2013). A high linear broadband cascode LNA employing common gate linearity enhancement technology. IEICE Electronics Express, 1(23), 1–12.

  12. 12.

    Wang, T. P. (2014). Minimized device junction leakage current at forward-bias body and applications for low-voltage quadruple-stacked common-gate amplifier. IEEE Transaction on Electron Device, 61(5), 1231–1236.

  13. 13.

    Hsu, M. T., Wu, K. L., & Chiu, W. C. (2015). Systematic approches of UWB low-power CMOS LNA with body biased technique. Wireless Engineering and Technology, 6, 61–77.

  14. 14.

    Dai, R., Zheng, Y., Zhu, H., Kong, W., & Zou, S. (2014). A high gain and high linearity current- reused CMOS LNA using modified derivative superposition technique with bulk-bias control. Wiley Microwave and optical technology letters, 56(10), 2444–2446.

  15. 15.

    Dai, R., Zheng, Y., He, J., Liu, G., Kong, W., & Zou, S. (2016). A 0.5 V novel complementary current-reuse CMOS LNA for 2.4 GHz medical application. ELSEVIER Microelectronics Journal, 55, 64–69.

  16. 16.

    Kumaravel, S., Kukde, A., Venkataramani, B., & Raja, R. (2016). A high linearity and high gain Folded Cascode LNA for narrowband receiver applications. Elsevier Microelectronics Journal, 54, 101–108.

  17. 17.

    Chiou, H. K., Lin, K. C., Chen, W. H., & Juang, Y. Z. (2012). A 1-V 5-GHz Self-Bias Folded-Switch Mixer in 90-nm CMOS for WLAN Receiver”. IEEE Tractions on Circuits and Systems-I, 59(6), 1215–1227.

  18. 18.

    Zavarei, M. J., Kargaran, E., Nabovati, H., (2011). Design of high gain CMOS LNA with improved linearity using modified derivative superposition. In Proceedings of IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 322–325.

  19. 19.

    Woo, S., Shao, J., & Kim, H. (2014). A gm-boosted common-gate CMOS low-noise amplifier with high P1-dB. Analog Integrated Circuits and Signal Processing, 80(1), 33–37.

  20. 20.

    Manjula, S., & Selvathi, D. (2013). Design of Low Power 2.4 GHz CMOS Cascode LNA with Reduced Noise Figure for WSN Applications. Wireless Pers Commun, 70, 1965–1976.

Download references

Author information

Correspondence to R. Raja.

Additional information

The original version of this article has been revised: Figures 2 and 7 have been corrected, restoring arrows lost in typesetting.

An erratum to this article is available at https://doi.org/10.1007/s11277-017-4569-5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raja, R., Venkataramani, B. & Hari Kishore, K. A 1-V 2.4 GHz Low-Power CMOS LNA Using Gain-Boosting and Derivative Superposition Techniques for WSN. Wireless Pers Commun 96, 383–402 (2017). https://doi.org/10.1007/s11277-017-4173-8

Download citation

Keywords

  • LNA
  • Derivative superposition
  • Linearity
  • Narrowband
  • WSN