Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Wireless Broadband Tools and Their Evolution Towards 5G Networks

Abstract

Telecom companies in the different generations resorted to different tools to conquer connectivity issues like coverage, throughput and quality of service. The success is driving new services of diversified requirements and more traffic which dictates a continuous increase in data rates and improved performance. This work reviews the different technology tools used to meet rates and traffic requirements of the past and the present with a look into their role in future networks. The coming fifth generation (5G), in particular, is confronted by a number of antonym challenges of capacity, spectrum, energy, connectivity, performance, complexity, and cost. Suggested tools proposed to meet these challenges and the way they act to do so are reviewed and compared to current and past solutions. The tools discussed are the use of millimetric waves, massive multiple input multiple output antenna systems, indoor–outdoor separation, ultra-dense cooperative networks, and the increased reliance on users’ terminals. The major constructional differences and tools differences between current and future 5G are finally emphasized.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    ITU. (2003). Framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000, Recommendation ITU-R M.1645 (06/2003).

  2. 2.

    Olsson, M., Cavdar, C., Frenger, P., Tombaz, S., Sabella, D., & Jantti, R. (2013). 5GrEEn: Towards Green 5G mobile networks. In 2013 IEEE 9th international conference on wireless and mobile computing, networking and communications (WiMob), 2013 (pp. 212–216).

  3. 3.

    Ericsson. (2014). Ericsson mobility report—On the pulse of the networked society, EAB-14:028658 Uen, Revision A, June, 2014. https://www.ericsson.com/res/docs/2014/ericsson-mobility-report-june-2014.pdf. Accessed Jan, 2015.

  4. 4.

    IMT-2020 Promotion Group. (2014). IMT vision towards 2020 and beyond (2014). http://www.itu.int/dms_pub/itu-r/oth/0a/06/R0A0600005D0001PDFE.pdf. Accessed Jan. 2015.

  5. 5.

    ITU. (2015). IMT vision–framework and overall objectives of the future development of IMT for 2020 and beyond, ITU-R M.2083-0 (09/2015).

  6. 6.

    Andrews, J. G., Buzzi, S., Wan, C., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

  7. 7.

    Cheng-Xiang, W., Haider, F., Xiqi, G., Xiao-Hu, Y., Yang, Y., Dongfeng, Y., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.

  8. 8.

    Chávez-Santiago, R., Szydełko, M., Kliks, A., Foukalas, F., Haddad, Y., Nolan, K. E., et al. (2015). 5G: The convergence of wireless communications. Wireless Personal Communications, 83(3), 1617–1642.

  9. 9.

    Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.

  10. 10.

    Shannon, C. E. (1948). A mathematical theory of communication. Bell Systems Technical Journal, 27, 379–423.

  11. 11.

    Verdu, S. (1998). Fifty years of Shannon theory. IEEE Transactions on Information Theory, 44(6), 2057–2078.

  12. 12.

    Vasudeva, K., Simsek, M., Perez, D., & Guvenc, I. (2016). Analysis of handover failures in heterogeneous networks with fading. IEEE Transactions on Vehicular Technology. doi:10.1109/TVT.2016.2640310.

  13. 13.

    Lin, H., Ishibashi, K., Shin, W.-Y., & Fujii, T. (2016). Decentralized power allocation for secondary random access in cognitive radio networks with successive interference cancellation. In IEEE international conference on communications (ICC), 2016 (pp. 1–6).

  14. 14.

    Qureshi, S. U. (1985). Adaptive equalization. Proceedings of the IEEE, 73(9), 1349–1387.

  15. 15.

    Parkvall, S., & Astely, D. (2009). The evolution of LTE towards IMT-advanced. Journal of Communications, 4(3), 146–154.

  16. 16.

    ITU. (2008). Requirements, and submission templates for the development of IMTAdvanced, Report ITU-R M.2133.

  17. 17.

    Himayat, N., Talwar, S., Rao, A., & Soni, R. (2010). Interference management for 4G cellular standards [WIMAX/LTE Update]. IEEE Communications Magazine, 48(8), 86–92.

  18. 18.

    Tariq, F., Dooley, L. S., Poulton, A. S., & Ji, Y. (2011). Dynamic fractional frequency reuse based hybrid resource management for femtocell networks. In 7th International communications and mobile computing conference (IWCMC 2011) (pp. 272–277).

  19. 19.

    Oh, C.-Y., Chung, M. Y., Choo, H., & Lee, T.-J. (2013). Resource allocation with partitioning criterion for macro-femto overlay cellular networks with fractional frequency reuse. Wireless Personal Communications, 68(2), 417–432.

  20. 20.

    Hou, J., Smee, J. E., Pfister, H. D., & Tomasin, S. (2006). Implementing interference cancellation to increase the EV-DO Rev A reverse link capacity. IEEE Communications Magazine, 44(2), 96–102.

  21. 21.

    Mahmood, N. H., Garcia, L. G. U., Popovski, P., & Mogensen, P. E. (2014). On the performance of successive interference cancellation in 5G small cell networks. In IEEE wireless communications and networking conference (WCNC), 2014 (pp. 1154–1159).

  22. 22.

    Balachandran, K., Kang, J. H., Karakayali, K., & Rege, K. M. (2012). Uplink performance enhancement in cellular networks via a Generalized Network Interference Cancellation scheme. In IEEE wireless communications and networking conference (WCNC), 2012 (pp. 2990–2995).

  23. 23.

    Kotzsch, V., Rave, W., & Fettweis, G. (2012). Interference cancellation and suppression in asynchronous cooperating base station systems. In International ITG workshop on smart antennas (WSA), 2012 (pp. 78–85).

  24. 24.

    Putzke, M., & Wietfeld, C. (2011). Self-organizing OFDMA systems by random frequency hopping. In Wireless Days (WD), IFIP, Ontario, Canada, 10–12, Oct., 2011 (pp. 1–6).

  25. 25.

    Schaich, F., Wild, T., & Chen, Y. (2014). Waveform contenders for 5G–suitability for short packet and low latency transmissions. In VTC Spring, Seoul, Korea, 18-21 May 2014 (pp. 1–5).

  26. 26.

    Schaich, F., & Wild, T. (2014). Waveform contenders for 5G—OFDM vs. FBMC vs. UFMC. In 6th International symposium on communications, control and signal processing (ISCCSP), Athens, Greece, May, 21–23, 2014 (pp. 457–460).

  27. 27.

    Farhang-Boroujeny, B. (2011). OFDM versus filter bank multicarrier. IEEE Signal Processing Magazine, 28(3), 92–112.

  28. 28.

    Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.

  29. 29.

    Bhushan, N., Li, J., Malladi, D., Gilmore, R., Brenner, D., Damnjanovic, A., et al. (2014). Network densification: The dominant theme for wireless evolution into 5G. IEEE Communications Magazine, 52(2), 82–89.

  30. 30.

    Jungnickel, V., Manolakis, K., Zirwas, W., Panzner, B., Braun, V., Lossow, M., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–51.

  31. 31.

    ITU. (2014). Future technology trends of terrestrial IMT systems, ITU-R M.2320-0 (11/2014).

  32. 32.

    Akyildiz, I. F., Chavarria-Reyes, E., Gutierrez-Estevez, D. M., Balakrishnan, R., & Krier, J. R. (2014). LTE-advanced and the evolution to beyond 4G (B4G) systems. Physical Communications, 10, 31–60.

  33. 33.

    Haider, F., Haiming, W., Haas, H., Dongfeng, Y., Haiming, W., Xiqi, G., et al. (2011). Spectral efficiency analysis of mobile Femtocell based cellular systems. In IEEE 13th international conference on communication technology (ICCT), 25–28 Sep. 2011 (pp. 347–351).

  34. 34.

    3GPP. (2014). Overview of 3GPP Release 12 V0.1.4 (2014-09).

  35. 35.

    Ancans, G., Bobrovs, V., Ancans, A., & Kalibatiene, D. (2017). Spectrum considerations for 5G mobile communication systems. Procedia Computer Science, 104, 509–516.

  36. 36.

    Khan, Z., Ahmadi, H., Hossain, E., Coupechoux, M., DaSilva, L. A., & Lehtomäki, J. J. (2014). Carrier aggregation/channel bonding in next generation cellular networks: Methods and challenges. IEEE Network, 28(6), 34–40.

  37. 37.

    Halbauer, H., Saur, S., Koppenborg, J., & Hoek, C. (2013). 3D beamforming: performance improvement for cellular networks. Bell Labs Technical Journal, 18(2), 37–56.

  38. 38.

    Koppenborg, J., Halbauer, H., Saur, S., & Hoek, C. (2012). 3D beamforming trials with an active antenna array. In 2012 International ITG Workshop on Smart Antennas (WSA), 7–8 Mar. 2012 (pp. 110–114).

  39. 39.

    Soret, B., & Pedersen, K. I. (2012). Macro transmission power reduction for hetnet co-channel deployments. In IEEE global communications conference (GLOBECOM), 2012 (pp. 4126–4130).

  40. 40.

    Pang, J., Wang, J., Wang, D., Shen, G., Jiang, Q., & Liu, J. (2012). Optimized time-domain resource partitioning for enhanced inter-cell interference coordination in heterogeneous networks. In IEEE wireless communications and networking conference (WCNC), 2012 (pp. 1613–1617).

  41. 41.

    Lopez-Perez, D., Guvenc, I., De La Roche, G., Kountouris, M., Quek, T. Q., & Zhang, J. (2011). Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wireless Communications, 18(3), 22–30.

  42. 42.

    Deb, S., Monogioudis, P., Miernik, J., & Seymour, J. P. (2013). Algorithms for enhanced inter-cell interference coordination (eICIC) in LTE HetNets. IEEE/ACM Transactions on Networking, 22(1), 137–150.

  43. 43.

    Behjati, M., & Cosmas, J. (2013). Multi-layer cell deployment strategy for self-organizing LTE-Advanced networks. In 9th International wireless communications and mobile computing conference (IWCMC), 2013 (pp. 820–825).

  44. 44.

    Kang, X., Zhang, R., & Motani, M. (2012). Price-based resource allocation for spectrum-sharing femtocell networks: A stackelberg game approach. IEEE Journal on Selected Areas in Communications, 30(3), 538–549.

  45. 45.

    Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine, 51(3), 136–144.

  46. 46.

    Yun, S.-Y., Yi, Y., Cho, D.-H., & Mo, J. (2012). The economic effects of sharing femtocells. IEEE Journal on Selected Areas in Communications, 30(3), 595–606.

  47. 47.

    Viterbi, A. J. (1995). CDMA: Principles of spread spectrum communication. Reading: Addison Wesley Longman Publishing.

  48. 48.

    Hosein, P. (2005). Capacity of packetized voice services over time-shared wireless packet data channels. In IEEE 24th annual joint conference of the IEEE computer and communications societies, 2005 (Vol. 3, pp. 2032–2043).

  49. 49.

    Song, G., & Li, Y. (2005). Cross-layer optimization for OFDM wireless networks-part I: Theoretical framework. IEEE Transactions on Wireless Communications, 4(2), 614–624.

  50. 50.

    Song, G., & Li, Y. (2005). Cross-layer optimization for OFDM wireless networks-part II: Algorithm development. IEEE Transactions on Wireless Communications, 4(2), 625–634.

  51. 51.

    Qiu, X., & Chawla, K. (1999). On the performance of adaptive modulation in cellular systems. IEEE Transactions on Communications, 47(6), 884–895.

  52. 52.

    Hanzo, L., El-Hajjar, M., & Alamri, O. (2011). Near-capacity wireless transceivers and cooperative communications in the MIMO era: Evolution of standards, waveform design, and future perspectives. Proceedings of the IEEE, 99(8), 1343–1385.

  53. 53.

    3GPP (2012, June). Further enhancements to LTE Time Division Duplex (TDD) for Downlink-Uplink (DL-UL) interference management and traffic adaptation (Release 11).

  54. 54.

    Chan, P. W., Lo, E. S., Wang, R. R., Au, E. K., Lau, V. K., Cheng, R. S., et al. (2006). The evolution path of 4G networks: FDD or TDD? IEEE Communications Magazine, 44(12), 42–50.

  55. 55.

    Bellalta, B., Bononi, L., Bruno, R., & Kassler, A. (2016). Next generation IEEE 802.11 wireless local area networks: Current status, future directions and open challenges. Computer Communications, 75, 1–25.

  56. 56.

    Choudhury, D. (2015). 5G wireless and millimeter wave technology evolution: An overview. In Microwave symposium (IMS), 2015 IEEE MTT-S international, 17 May 2015 (pp. 1–4).

  57. 57.

    Beltran, F., Ray, S. K., & Gutiérrez, J. A. (2016). Understanding the current operation and future roles of wireless networks: Co-existence, competition and co-operation in the unlicensed spectrum bands. IEEE Journal on Selected Areas in Communications, 34(11), 2829–2837.

  58. 58.

    Jamalipour, A., Wada, T., & Yamazato, T. (2005). A tutorial on multiple access technologies for beyond 3G mobile networks. IEEE Communications Magazine, 43(2), 110–117.

  59. 59.

    IEEE. (2004). IEEE standard for local and metropolitan area networks—Part 16: Air interface for fixed broadband wireless access systems.

  60. 60.

    IEEE. (2006). Amendment for physical and medium access control layers for combined fixed and mobile operation in licensed bands. (Vol. IEEE 802.16e-2005).

  61. 61.

    Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). LTE-advanced: Next-generation wireless broadband technology [Invited Paper]. IEEE Wireless Communications, 17(3), 10–22.

  62. 62.

    Aldmour, I. (2013). LTE and WiMAX: Comparison and future perspective. Communications & Network, 5(4), 360–368.

  63. 63.

    Lee, J., Kim, Y., Kwak, Y., Zhang, J., Papasakellariou, A., Novlan, T., et al. (2016). LTE-advanced in 3GPP Rel-13/14: An evolution toward 5G. IEEE Communications Magazine, 54(3), 36–42.

  64. 64.

    Mallinson, K. (2012). 2020 Vision for LTE. http://www.3gpp.org/IMG/pdf/wiseharbor.pdf. Accessed Jan, 10 2015.

  65. 65.

    3GPP (2014). Overview of 3GPP Release 13 V0.0.6 (2014-06).

  66. 66.

    Ghavimi, F., & Chen, H.-H. (2015). M2M communications in 3GPP LTE/LTE-A networks: Architectures, service requirements, challenges, and applications. IEEE Communications Surveys & Tutorials, 17(2), 525–549.

  67. 67.

    Simsek, M., Aijaz, A., Dohler, M., Sachs, J., & Fettweis, G. (2016). The 5G-enabled tactile internet: Applications, requirements, and architecture. In Wireless communications and networking conference (WCNC), 2016 (pp. 1–6).

  68. 68.

    Yang, X., & Tao, X. (2013). Challenges and perspectives on 5G-From the angle of Compressed Sensing. In 2nd Symposium on wireless sensors and cellular networks (WSCN’13), Jeddah, Saudi Arabia, December 13–16, 2013

  69. 69.

    Eguchi, A., Nguyen, H., & Thompson, C. W. (2013). Everything is alive: Towards the future wisdom Web of things. World Wide Web, 16(4), 357–378.

  70. 70.

    de Mattos, W. D., & Gondim, P. R. (2016). M-Health solutions using 5G networks and M2M communications. IT Professional, 18(3), 24–29.

  71. 71.

    Simsek, M., Aijaz, A., Dohler, M., Sachs, J., & Fettweis, G. (2016). 5G-enabled tactile internet. IEEE Journal on Selected Areas in Communications, 34(3), 460–473.

  72. 72.

    Sapienza, M., Guardo, E., Cavallo, M., La Torre, G., Leombruno, G., & Tomarchio, O. (2016). Solving critical events through Mobile Edge Computing: An approach for smart cities. In IEEE international conference on smart computing (SMARTCOMP), 2016 (pp. 1–5).

  73. 73.

    Condoluci, M., Sardis, F., & Mahmoodi, T. (2016). Softwarization and virtualization in 5G networks for smart cities. In Internet of things. IoT infrastructures: Second international summit, IoT 360°, Revised Selected Papers, Part I, Rome, Italy, 27–29, Oct. 2016 (pp. 179–186). Springer.

  74. 74.

    Sama, M. R., Beker, S., Kiess, W., & Thakolsri, S. (2016). Service-based slice selection function for 5G. In IEEE global communications conference (GLOBECOM), 2016 (pp. 1–6).

  75. 75.

    Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.

  76. 76.

    Samimi, M., Wang, K., Azar, Y., Wong, G. N., Mayzus, R., Zhao, H., et al. (2013). 28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable beam antennas in New York City. In IEEE 77th vehicular technology conference (VTC Spring), 2013 (pp. 1–6).

  77. 77.

    Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 99(8), 1390–1436.

  78. 78.

    Kao-Cheng, H., & Zhaocheng, W. (2011). Terahertz terabit wireless communication. IEEE Microwave Magazine, 12(4), 108–116.

  79. 79.

    Rappaport, T. S., & Murdock, J. (2012). Power efficiency and consumption factor analysis for broadband millimeter-wave cellular networks. In IEEE global communications conference (GLOBECOM), 2012 (pp. 4518–4523).

  80. 80.

    Gutierrez, F., Agarwal, S., Parrish, K., & Rappaport, T. S. (2009). On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems. IEEE Journal on Selected Areas in Communications, 27(8), 1367–1378.

  81. 81.

    Alrabadi, O., Tsakalaki, E., Huang, H., & Pedersen, G. F. (2013). Beamforming via large and dense antenna arrays above a clutter. IEEE Journal on Selected Areas in Communications, 31(2), 314–325.

  82. 82.

    Badoi, C.-I., Prasad, N., Croitoru, V., & Prasad, R. (2011). 5G based on cognitive radio. Wireless Personal Communications, 57(3), 441–464.

  83. 83.

    Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

  84. 84.

    Correia, L. M., Zeller, D., Blume, O., Ferling, D., Jading, Y., Gódor, I., et al. (2010). Challenges and enabling technologies for energy aware mobile radio networks. IEEE Communications Magazine, 48(11), 66–72.

  85. 85.

    Hayashi, K., Nagahara, M., & Tanaka, T. (2013). A user’s guide to compressed sensing for communications systems. IEICE Transactions on Communications, 96(3), 685–712.

  86. 86.

    Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.

  87. 87.

    Ngo, H. Q., Marzetta, T. L., & Larsson, E. G. (2011). Analysis of the pilot contamination effect in very large multicell multiuser MIMO systems for physical channel models. In IEEE international conference on acoustics, speech and signal processing (ICASSP), 2011 (pp. 3464–3467).

  88. 88.

    Di Renzo, M., Haas, H., & Grant, P. M. (2011). Spatial modulation for multiple-antenna wireless systems: A survey. IEEE Communications Magazine, 49(12), 182–191.

  89. 89.

    Tombaz, S., Vastberg, A., & Zander, J. (2011). Energy- and cost-efficient ultra-high-capacity wireless access. IEEE Wireless Communications, 18(5), 18–24.

  90. 90.

    Dhondge, K., Park, H., Choi, B.-Y., & Song, S. (2013). ECOPS: Energy-efficient collaborative opportunistic positioning for heterogeneous mobile devices. Journal of Computer Networks and Communications, 2013, 1–13.

  91. 91.

    Tudzarov, A., & Janevski, T. (2011). Protocols and algorithms for the next generation 5G mobile systems. Network Protocols & Algorithms, 3(1), 94–114.

  92. 92.

    Lu, W. W. (2008). An open baseband processing architecture for future mobile terminal design. IEEE Wireless Communications, 15(2), 110–119.

  93. 93.

    Janevski, T. (2009). 5G mobile phone concept. In 6th IEEE consumer communications and networking conference (CCNC) 2009 (pp. 1–2).

  94. 94.

    Kim, H., & Feamster, N. (2013). Improving network management with software defined networking. IEEE Communications Magazine, 51(2), 114–119.

  95. 95.

    Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

  96. 96.

    Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

  97. 97.

    Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49.

  98. 98.

    Orsino, A., Araniti, G., Militano, L., Alonso-Zarate, J., Molinaro, A., & Iera, A. (2016). Energy efficient IoT data collection in smart cities exploiting D2D communications. Sensors, 16(6), 836.

  99. 99.

    Ratasuk, R., Vejlgaard, B., Mangalvedhe, N., & Ghosh, A. (2016). NB-IoT system for M2M communication. In IEEE wireless communications and networking conference (WCNC), 2016 (pp. 1–5).

Download references

Acknowledgements

The authors like to thank Albaha University and the Deanship of Scientific Research for their support under research Grant No. 1435/228.

Author information

Correspondence to Ismat Aldmour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aldmour, I. Wireless Broadband Tools and Their Evolution Towards 5G Networks. Wireless Pers Commun 95, 4185–4210 (2017). https://doi.org/10.1007/s11277-017-4058-x

Download citation

Keywords

  • Wireless broadband tools
  • Broadband evolution
  • Broadband future
  • 5G