Advertisement

Wireless Personal Communications

, Volume 95, Issue 4, pp 4025–4047 | Cite as

Wireless Sensor Network Based Smart Grid Communications: Challenges, Protocol Optimizations, and Validation Platforms

  • Sana RekikEmail author
  • Nouha Baccour
  • Mohamed Jmaiel
  • Khalil Drira
Article

Abstract

Smart grids, the next generation of electric grids, require the deployment of sophisticated monitoring and control systems to enhance their operational efficiency. Wireless sensor networks (WSNs) have been considered as a promising communication technology for the monitoring and control of smart grid operation. They bring significant advantages such as, rapid deployment, low cost and scalability. However, the deployment of WSNs in smart grids brought new challenges mainly due to the electric grid features. Consequently, traditional WSN communication protocols have been shown inadequate and several recent research efforts were dedicated for their optimization. This paper provides a comprehensive survey on related literature, discusses the still-open research issues, and identifies the most common validation platforms for experimenting WSN communications in smart grid. We believe this survey will pave the way for the research community to (i) understand important concepts related to WSN-based smart grid communications, (ii) identify gaps and make valuable contributions in this timely and exiting field and (iii) choose the convenient experimental platform for the validation of proposed solutions.

Keywords

Smart grid communications Wireless sensor networks WSN-based smart grid communications Protocol optimization Validation platforms 

References

  1. 1.
    Al-Anbagi, I. S., Erol-Kantarci, M., & Mouftah, H. T. (2013). A delay mitigation scheme for WSN-based smart grid substation monitoring. In IWCMC (pp. 1470–1475).Google Scholar
  2. 2.
    Al-Anbagi, I. S., Erol-Kantarci, M., & Mouftah, H. T. (2013). QoS-aware inter-cluster head scheduling in WSNs for high data rate smart grid applications. In IEEE global communications conference, GLOBECOM 2013, Atlanta, GA (pp. 2628–2634). Dec 9–13, 2013.Google Scholar
  3. 3.
    Al-Anbagi, I. S., Erol-Kantarci, M., & Mouftah, H. T. (2014). Priority- and delay-aware medium access for wireless sensor networks in the smart grid. IEEE Systems Journal, 8(2), 608–618. doi: 10.1109/JSYST.2013.2260939.CrossRefGoogle Scholar
  4. 4.
    Al-Anbagi, I. S., Erol-Kantarci, M., & Mouftah, H. T. (2015). Delay critical smart grid applications and adaptive QoS provisioning. IEEE Access, 3, 1367–1378. doi: 10.1109/ACCESS.2015.2466077.CrossRefGoogle Scholar
  5. 5.
    Al-Anbagi, I. S., Erol-Kantarci, M., & Mouftah, H. T. (2016). A survey on cross-layer quality-of-service approaches in WSNs for delay and reliability-aware applications. IEEE Communications Surveys and Tutorials, 18(1), 525–552. doi: 10.1109/COMST.2014.2363950.CrossRefGoogle Scholar
  6. 6.
    Al-Anbagi, I. S., Mouftah, H. T., & Erol-Kantarci, M. (2011) Design of a delay-sensitive WSN for generation monitoring in the smart grid. In CCECE (pp. 1370–1373).Google Scholar
  7. 7.
    Ancillotti, E., Bruno, R., & Conti, M. (2013). The role of communication systems in smart grids: Architectures, technical solutions and research challenges. Computer Communications, 36(17–18), 1665–1697.CrossRefGoogle Scholar
  8. 8.
    Baccour, N., Koubaa, A., Mottola, L., Zamalloa, M. A. Z., Youssef, H., Boano, C. A., et al. (2012). Radio link quality estimation in wireless sensor networks: A survey. TOSN, 8(4), 34.CrossRefGoogle Scholar
  9. 9.
    Baccour, N., Koubaa, A., Noda, C., Fotouhi, H., Alves, M., Youssef, H., et al. (2013). Radio link quality estimation in low-power wireless networks., Springer briefs in electrical and computer engineering Berlin: Springer. doi: 10.1007/978-3-319-00774-8.CrossRefGoogle Scholar
  10. 10.
    Bicen, A., Akan, O., & Gungor, V. (2012). Spectrum-aware and cognitive sensor networks for smart grid applications. IEEE Communications Magazine, 50(5), 158–165. doi: 10.1109/MCOM.2012.6194397.CrossRefGoogle Scholar
  11. 11.
    Bilgin, B. E., & Çagri Güngör, V. (2012). Performance evaluations of zigbee in different smart grid environments. Computer Networks, 56(8), 2196–2205. doi: 10.1016/j.comnet.2012.03.002.CrossRefGoogle Scholar
  12. 12.
    Bilgin, B. E., & Gungor, V. C. (2011). On the performance of multi-channel wireless sensor networks in smart grid environments. In ICCCN (pp. 1–6).Google Scholar
  13. 13.
    Boulis, A. (2007). Castalia: Revealing pitfalls in designing distributed algorithms in WSN. In Proceedings of the 5th international conference on embedded networked sensor systems (pp. 407–408). ACM.Google Scholar
  14. 14.
    Downard, I. T. (2004). Simulating sensor networks in NS-2. DTIC Document: Tech. rep.Google Scholar
  15. 15.
    Dunkels, A., Gronvall, B., & Voigt, T. (2004). Contiki-a lightweight and flexible operating system for tiny networked sensors. In 29th annual IEEE international conference on local computer networks (pp. 455–462). IEEE.Google Scholar
  16. 16.
    Erol-Kantarci, M., & Mouftah, H. T. (2011). Wireless multimedia sensor and actor networks for the next generation power grid. Ad Hoc Networks, 9(4), 542–551.CrossRefGoogle Scholar
  17. 17.
    Erol-Kantarci, M., & Mouftah, H. T. (2011). Wireless sensor networks for cost-efficient residential energy management in the smart grid. IEEE Transaction on Smart Grid, 2(2), 314–325.CrossRefGoogle Scholar
  18. 18.
    Erol-Kantarci, M., & Mouftah, H. T. (2013). Smart grid forensic science: Applications, challenges, and open issues. IEEE Communications Magazine, 51(1), 68–74.CrossRefGoogle Scholar
  19. 19.
    Erol-Kantarci, M., & Mouftah, H. T. (2015). Energy-efficient information and communication infrastructures in the smart grid: A survey on interactions and open issues. IEEE Communications Surveys and Tutorials, 17(1), 179–197. doi: 10.1109/COMST.2014.2341600.CrossRefGoogle Scholar
  20. 20.
    Fadel, E. A., Gungor, V. C., Nassef, L., Akkari, N., Malik, M. G. A., Almasri, S., et al. (2015). A survey on wireless sensor networks for smart grid. Computer Communications, 71, 22–33. doi: 10.1016/j.comcom.2015.09.006.CrossRefGoogle Scholar
  21. 21.
    Fan, Z., Kalogridis, G., Efthymiou, C., Sooriyabandara, M., Serizawa, M., & McGeehan, J. (2010). The new frontier of communications research: Smart grid and smart metering. In Proceedings of the 1st international conference on energy-efficient computing and networking, e-Energy ’10 (pp. 115–118). ACM: New York. doi: 10.1145/1791314.1791331.
  22. 22.
    Fan, Z., Kulkarni, P., Gormus, S., Efthymiou, C., Kalogridis, G., Sooriyabandara, M., et al. (2013). Smart grid communications: Overview of research challenges, solutions, and standardization activities. IEEE Communications Surveys and Tutorials, 15(1), 21–38.CrossRefGoogle Scholar
  23. 23.
    Fang, X., Misra, S., Xue, G., & Yang, D. (2012). Smart grid—the new and improved power grid: A survey. IEEE Communications Surveys and Tutorials, 14(4), 944–980.CrossRefGoogle Scholar
  24. 24.
    Fateh, B., Govindarasu, M., & Ajjarapu, V. (2013). Wireless network design for transmission line monitoring in smart grid. IEEE Transaction on Smart Grid, 4(2), 1076–1086.CrossRefGoogle Scholar
  25. 25.
    Gao, J., Xiao, Y., Liu, J., Liang, W., & Chen, C. L. P. (2012). A survey of communication/networking in smart grids. Future Generation Computer Systems, 28(2), 391–404.CrossRefGoogle Scholar
  26. 26.
    Grilo, A., Casaca, A., Pereira, P. R., Buttyán, L., Gonçalves, J., & Fortunato, C. (2012). A wireless sensor and actuator network for improving the electrical power grid dependability. In NGI (pp. 71–78).Google Scholar
  27. 27.
    Guglielmo, D. D., Brienza, S., & Anastasi, G. (2016). IEEE 802.15.4e: A survey. Computer Communications, 88, 1–24. doi: 10.1016/j.comcom.2016.05.004.CrossRefGoogle Scholar
  28. 28.
    Gungor, V., & Sahin, D. (2012). Cognitive radio networks for smart grid applications: A promising technology to overcome spectrum inefficiency. IEEE Vehicular Technology Magazine, 7(2), 41–46. doi: 10.1109/MVT.2012.2190183.CrossRefGoogle Scholar
  29. 29.
    Gungor, V. C., & Korkmaz, M. K. (2012). Wireless link-quality estimation in smart grid environments. International Journal of Distributed Sensor Networks. doi: 10.1155/2012/214068.
  30. 30.
    Gungor, V. C., Lu, B., & Hancke, G. P. (2010). Opportunities and challenges of wireless sensor networks in smart grid. IEEE Transactions on Industrial Electronics, 57(10), 3557–3564.CrossRefGoogle Scholar
  31. 31.
    Gungor, V. C., Sahin, D., Kocak, T., Ergüt, S., Buccella, C., Cecati, C., et al. (2011). Smart grid technologies: Communication technologies and standards. IEEE Transaction on Industrial Informatics, 7(4), 529–539.CrossRefGoogle Scholar
  32. 32.
    Gungor, V. C., Sahin, D., Kocak, T., Ergüt, S., Buccella, C., Cecati, C., et al. (2013). A survey on smart grid potential applications and communication requirements. IEEE Transaction on Industrial Informatics, 9(1), 28–42.CrossRefGoogle Scholar
  33. 33.
    Henderson, T. R., Lacage, M., Riley, G. F., Dowell, C., & Kopena, J. (2008). Network simulations with the NS-3 simulator. SIGCOMM Demonstration, 15, 17.Google Scholar
  34. 34.
    Ho, Q., Gao, Y., Rajalingham, G., & Le-Ngoc, T. (2014). Wireless communications networks for the smart grid., Springer briefs in computer science Berlin: Springer. doi: 10.1007/978-3-319-10347-1.CrossRefGoogle Scholar
  35. 35.
    IPW Group (2012). Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). Amendment 1: MAC sublayer. IEEE Standard for Local and metropolitan area networks IEEE Std 802.15. 4e-2012.Google Scholar
  36. 36.
    Incel, O. D. (2011). A survey on multi-channel communication in wireless sensor networks. Computer Networks, 55(13), 3081–3099.CrossRefGoogle Scholar
  37. 37.
    Jaikaeo, C., & Shen, C. C. (2005). Qualnet tutorial. Retrieved Jan 6, 2000.Google Scholar
  38. 38.
    Khan, R. H., & Khan, J. Y. (2013). A comprehensive review of the application characteristics and traffic requirements of a smart grid communications network. Computer Networks, 57(3), 825–845. doi: 10.1016/j.comnet.2012.11.002.CrossRefGoogle Scholar
  39. 39.
    Levis, P., Lee, N., Welsh, M., & Culler, D. (2003). Tossim: Accurate and scalable simulation of entire tinyos applications. In Proceedings of the 1st international conference on embedded networked sensor systems, SenSys ’03 (pp. 126–137). ACM: New York. doi: 10.1145/958491.958506.
  40. 40.
    Liberatore, V., & Al-Hammouri, A. (2011). Smart grid communication and co-simulation. In Energytech, 2011 IEEE (pp. 1–5). doi: 10.1109/EnergyTech.2011.5948542.
  41. 41.
    Lin, H., Veda, S. S., Shukla, S. K., Mili, L., & Thorp, J. S. (2012). GECO: Global event-driven co-simulation framework for interconnected power system and communication network. IEEE Transaction on Smart Grid, 3(3), 1444–1456.CrossRefGoogle Scholar
  42. 42.
    Long, X., Dong, M., Xu, W., & Li, Y. W. (2012). Online monitoring of substation grounding grid conditions using touch and step voltage sensors. IEEE Transaction on Smart Grid, 3(2), 761–769.CrossRefGoogle Scholar
  43. 43.
    Ma, R., Chen, H. H., Huang, Y. R., & Meng, W. (2013). Smart grid communication: Its challenges and opportunities. IEEE Transactions on Smart Grid, 4(1), 36–46. doi: 10.1109/TSG.2012.2225851.CrossRefGoogle Scholar
  44. 44.
    Mahmood, A., Javaid, N., & Razzaq, S. (2015). A review of wireless communications for smart grid. Renewable and Sustainable Energy Reviews, 41, 248–260.CrossRefGoogle Scholar
  45. 45.
    Majumder, R., Bag, G., & Kim, K. H. (2012). Power sharing and control in distributed generation with wireless sensor networks. IEEE Transaction on Smart Grid, 3(2), 618–634.CrossRefGoogle Scholar
  46. 46.
    Matta, N., Rahim-Amoud, R., Merghem-Boulahia, L., & Jrad, A. (2012). A wireless sensor network for substation monitoring and control in the smart grid. In GreenCom (pp. 203–209).Google Scholar
  47. 47.
    Nasipuri, A., Cox, R., Conrad, J., der Zel, L. V., Rodriguez, B., & McKosky, R. (2010). Design considerations for a large-scale wireless sensor network for substation monitoring. In LCN (pp. 866–873).Google Scholar
  48. 48.
    Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., & Voigt, T. (2006). Cross-level sensor network simulation with cooja. In Proceedings 2006 31st IEEE conference on local computer networks (pp. 641–648). doi: 10.1109/LCN.2006.322172.
  49. 49.
    Palattella, M., Accettura, N., Vilajosana, X., Watteyne, T., Grieco, L., Boggia, G., et al. (2013). Standardized protocol stack for the internet of (important) things. IEEE Communications Surveys Tutorials, 15(3), 1389–1406. doi: 10.1109/SURV.2012.111412.00158.CrossRefGoogle Scholar
  50. 50.
    Rajalingham, G., Gao, Y., Ho, Q., & Le-Ngoc, T. (2014). Quality of service differentiation for smart grid neighbor area networks through multiple RPL instances. In Q2SWinet’14, Proceedings of the 10th ACM symposium on QoS and security for wireless and mobile networks, montreal, QC, September 21–22, 2014 (pp. 17–24). doi: 10.1145/2642687.2642695.
  51. 51.
    Rekik, S., Baccour, N., Jmaiel, M., & Drira, K. (2015). Low-power link quality estimation in smart grid environments. In IWCMC 2015 wireless sensor symposium (IWCMC 2015 wireless sensor symposium). Dubrovnik, Croatia.Google Scholar
  52. 52.
    Rekik, S., Baccour, N., Jmaiel, M., & Drira, K. (2016) Holistic link quality estimation-based routing metric for RPL networks in smart grids. In 27th annual IEEE international symposium on personal, indoor and mobile radio communications (PIMRC): Mobile and wireless networks (IEEE PIMRC2016 mobile and wireless).Google Scholar
  53. 53.
    Sabbah, A. I., Mougy, A. H. E., & Ibnkahla, M. (2014). A survey of networking challenges and routing protocols in smart grids. IEEE Transaction on Industrial Informatics, 10(1), 210–221. doi: 10.1109/TII.2013.2258930.CrossRefGoogle Scholar
  54. 54.
    Sahin, D., Gungor, V. C., Kocak, T., & Tuna, G. (2014). Quality-of-service differentiation in single-path and multi-path routing for wireless sensor network-based smart grid applications. Ad Hoc Networks, 22, 43–60.CrossRefGoogle Scholar
  55. 55.
    Shah, G., Gungor, V., & Akan, O. (2013). A cross-layer QoS-aware communication framework in cognitive radio sensor networks for smart grid applications. IEEE Transactions on Industrial Informatics, 9(3), 1477–1485. doi: 10.1109/TII.2013.2242083.CrossRefGoogle Scholar
  56. 56.
    Shah, G. A., Gungor, V. C., & Akan, Ö.B. (2012). A cross-layer design for QoS support in cognitive radio sensor networks for smart grid applications. In ICC (pp. 1378–1382).Google Scholar
  57. 57.
    Sobeih, A., Hou, J. C., Kung, L., Li, N., Zhang, H., Chen, W., et al. (2006). J-sim: A simulation and emulation environment for wireless sensor networks. IEEE Wireless Communication, 13(4), 104–119. doi: 10.1109/MWC.2006.1678171.CrossRefGoogle Scholar
  58. 58.
    Sobeih, A., Viswanathan, M., Marinov, D., & Hou, J. C. (2007). J-sim: An integrated environment for simulation and model checking of network protocols. In IPDPS (pp. 1–6).Google Scholar
  59. 59.
    Soua, R., & Minet, P. (2015). Multichannel assignment protocols in wireless sensor networks: A comprehensive survey. Pervasive and Mobile Computing, 16, 2–21. doi: 10.1016/j.pmcj.2014.04.004.CrossRefGoogle Scholar
  60. 60.
    Sun, W., & Wang, J. (2014). Cross-layer QoS optimization of wireless sensor network for smart grid. International Journal of Distributed Sensor Networks. doi: 10.1155/2014/327067.
  61. 61.
    Temel, c, Gungor, Vc, & Koçak, T. (2014). Routing protocol design guidelines for smart grid environments. Computer Networks, 60, 160–170. doi: 10.1016/j.bjp.2013.11.009.CrossRefGoogle Scholar
  62. 62.
    Varga, A., et al. (2001). The omnet++ discrete event simulation system. In Proceedings of the European simulation multiconference (ESM2001) (Vol. 9, p. 65). sn.Google Scholar
  63. 63.
    Wang, W., Xu, Y., & Khanna, M. (2011). A survey on the communication architectures in smart grid. Computer Networks, 55(15), 3604–3629.CrossRefGoogle Scholar
  64. 64.
    Wu, Y. C., Cheung, L. F., Lui, K. S., & Pong, P. W. T. (2012). Efficient communication of sensors monitoring overhead transmission lines. IEEE Transaction on Smart Grid, 3(3), 1130–1136.CrossRefGoogle Scholar
  65. 65.
    Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2013). A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys and Tutorials, 15(1), 5–20.CrossRefGoogle Scholar
  66. 66.
    Yigit, M., Gungor, V. C., Fadel, E. A., Nassef, L., Akkari, N., & Akyildiz, I. F. (2016). Channel-aware routing and priority-aware multi-channel scheduling for WSN-based smart grid applications. Journal of Network and Computer Applications, 71, 50–58. doi: 10.1016/j.jnca.2016.05.015.CrossRefGoogle Scholar
  67. 67.
    Yigit, M., Incel, Ö. D., & Çagri Güngör, V. (2014). On the interdependency between multi-channel scheduling and tree-based routing for WNSs in smart grid environments. Computer Networks, 65, 1–20.CrossRefGoogle Scholar
  68. 68.
    Yigit, M., Yoney, E., & Gungor, V. (2013). Performance of mac protocols for wireless sensor networks in harsh smart grid environment. In First International Black Sea conference on communications and networking (BlackSeaCom) (pp. 50–53). doi: 10.1109/BlackSeaCom.2013.6623380.
  69. 69.
    Zaker, N., Kantarci, B., Erol-Kantarci, M., & Mouftah, H. T. (2014). Smart grid monitoring with service differentiation via EPON and wireless sensor network convergence. Optical Switching and Networking, 14, 53–68. doi: 10.1016/j.osn.2014.01.010.CrossRefGoogle Scholar
  70. 70.
    Zhu, K., Chenine, M., & Nordstrom, L. (2011). ICT architecture impact on wide area monitoring and control systems’ reliability. IEEE Transactions on Power Delivery, 26(4), 2801–2808. doi: 10.1109/TPWRD.2011.2160879.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sana Rekik
    • 1
    Email author
  • Nouha Baccour
    • 1
  • Mohamed Jmaiel
    • 1
  • Khalil Drira
    • 2
  1. 1.ReDCAD Laboratory, National School of Engineers of SfaxUniversity of SfaxSfaxTunisia
  2. 2.CNRS, LAASToulouseFrance

Personalised recommendations