Wireless Personal Communications

, Volume 95, Issue 4, pp 3539–3556 | Cite as

A Novel Cooperative Communication System Based on Multilevel Convolutional Codes

Article
  • 95 Downloads

Abstract

The authors propose a system where single antenna mobile users share antennas to transmit their information cooperatively to the common base station. Each mobile user overhears the coded information transmitted by other users, detects it and further encodes it along with its own information. The encoding is done using multilevel coding scheme with convolutional codes as component codes. The proposed system considers the self-information of user u at level u to reduce complexity while decoding. The coded symbols are mapped to M-ary quadrature amplitude modulation constellation using multi-resolution modulation partitioning. This enables the component codes to be designed for lower order constellation. Each cooperative user transmits multilevel coded symbols to the common base station, thus creating transmit diversity. The base station receives noisy superposition of independent Rayleigh faded signals transmitted by cooperative users and pass it through a multistage decoder. The multistage decoder employs maximum likelihood based Viterbi decoder at each stage to detect the information of each user. The Viterbi decoder applies max-log approximation to reduce the branch metric complexity. The proposed cooperative multilevel coding system outperforms non-cooperative multilevel coding system and is less complex than the existing cooperative multilevel coding system.

Keywords

Cooperative diversity Multilevel coding Convolutional code Diversity methods Channel coding Rayleigh fading channel 

Notes

Acknowledgement

This research work is supported by Department of Electronics and Information Technology (DeitY), Ministry of Communications & Information Technology, Government of India.

References

  1. 1.
    Sklar, B. (2001). Digital communications. Upper Saddle River: Prentice Hall.MATHGoogle Scholar
  2. 2.
    Sendonaris, A. (1999). Advanced techniques for next-generation wireless systems. Ph.D. thesis, Rice University, United States.Google Scholar
  3. 3.
    Vitetta, G., Taylor, D. P., Colavolpe, G., Pancaldi, F., & Martin, P. A. (2013). Wireless communications: Algorithmic techniques. Hoboken: Wiley.CrossRefGoogle Scholar
  4. 4.
    Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.CrossRefGoogle Scholar
  5. 5.
    Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. Part I. System description. IEEE Transactions on Communications, 51(11), 1927–1938.CrossRefGoogle Scholar
  6. 6.
    Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. Part II. Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.CrossRefGoogle Scholar
  7. 7.
    Laneman, J. N., Tse, D. N., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hunter, T. E., & Nosratinia, A. (2002). Cooperation diversity through coding. In Proceedings of IEEE international symposium on information theory (pp. 220).Google Scholar
  9. 9.
    Hunter, T. E., & Nosratinia, A. (2006). Diversity through coded cooperation. IEEE Transactions on Wireless Communications, 5(2), 283–289.CrossRefGoogle Scholar
  10. 10.
    Morelos-Zaragoza, R. H. (2006). The art of error correcting coding. Hoboken: Wiley.CrossRefGoogle Scholar
  11. 11.
    Janani, M., Hedayat, A., Hunter, T. E., & Nosratinia, A. (2004). Coded cooperation in wireless communications: Space–time transmission and iterative decoding. IEEE Transactions on Signal Processing, 52(2), 362–371.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space–time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hunter, T. E., Sanayei, S., & Nosratinia, A. (2006). Outage analysis of coded cooperation. IEEE Transactions on Information Theory, 52(2), 375–391.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Norouzi, M., Attang, E., Wu, Y., & Atkin, G. E. (2014). Symbol error rate analysis for cooperative diversity networks by distributed embedded space time code. In Proceedings of IEEE international conference on electro/information technology (pp. 422–426).Google Scholar
  15. 15.
    Ishibashi, K., Ishii, K., & Ochiai, H. (2011). Dynamic coded cooperation using multiple turbo codes in wireless relay networks. IEEE Journal of Selected Topics in Signal Processing, 5(1), 197–207.CrossRefGoogle Scholar
  16. 16.
    Duyck, D., Boutros, J. J., & Moeneclaey, M. (2011). Low-density graph codes for coded cooperation on slow fading relay channels. IEEE Transactions on Information Theory, 57(7), 4202–4218.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Yang, T., & Yuan, J. (2010). Performance of iterative decoding for superposition modulation-based cooperative transmission. IEEE Transactions on Wireless Communications, 9(1), 51–59.CrossRefGoogle Scholar
  18. 18.
    Zhang, R., & Hanzo, L. (2009). Coding schemes for energy efficient multi-source cooperation aided uplink transmission. IEEE Signal Processing Letters, 16(5), 438–441.CrossRefGoogle Scholar
  19. 19.
    Ishii, K., Ishibashi, K., & Ochiai, H. (2011). Multilevel coded cooperation for multiple sources. IEEE Transactions on Wireless Communications, 10(12), 4258–4269.CrossRefGoogle Scholar
  20. 20.
    Imai, H., & Hirakawa, S. (1977). A new multilevel coding method using error-correcting codes. IEEE Transactions on Information Theory, 23(3), 371–377.CrossRefMATHGoogle Scholar
  21. 21.
    Wachsmann, U., Fischer, R. F., & Huber, J. B. (1999). Multilevel codes: Theoretical concepts and practical design rules. IEEE Transactions on Information Theory, 45(5), 1361–1391.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Abotabl, A. A., & Nosratinia, A. (2014). Multi-level coding and multi-stage decoding in MAC, broadcast, and relay channel. In Proceedings of IEEE international symposium on information theory (pp. 96–100).Google Scholar
  23. 23.
    Ungerboeck, G. (1982). Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory, 28(1), 55–67.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Baghaie, A., Martin, P., & Taylor, D. P. (2010). Grouped multilevel space-time trellis codes. IEEE Communications Letters, 14(3), 232–234.CrossRefGoogle Scholar
  25. 25.
    Sharma, S. (2012). A novel weighted multilevel space–time trellis coding scheme. Computers & Mathematics with Applications, 63(1), 280–287.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Jain, D., & Sharma, S. (2015). A novel grouped multilevel dynamic space–time trellis coding scheme. International Journal of Communication Systems, 28(6), 1168–1179.CrossRefGoogle Scholar
  27. 27.
    Johannesson, R., & Zigangirov, K. S. (2015). Fundamentals of convolutional coding. Hoboken: Wiley.CrossRefMATHGoogle Scholar
  28. 28.
    Proakis, J. G., & Salehi, M. (2008). Digital communications. New York: McGraw-Hill.Google Scholar
  29. 29.
    Cover, T. M. (1972). Broadcast channels. IEEE Transactions on Information Theory, 18(1), 2–14.MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Baghaie Abchuyeh, M. (2008). Multilevel space–time trellis codes for rayleigh fading channels. ME thesis, University of Canterbury, New Zealand.Google Scholar
  31. 31.
    Forney, G. D., Jr. (1973). The viterbi algorithm. Proceedings of the IEEE, 61(3), 268–278.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Atay, F. (2009). Cooperative diversity relaying techniques in wireless communication networks. Ph.D. thesis, Carleton University, Canada.Google Scholar
  33. 33.
    Zhao, B., & Valenti, M. C. (2005). Practical relay networks: A generalization of hybrid-ARQ. IEEE Journal on Selected Areas in Communication, 23(1), 7–18.CrossRefGoogle Scholar
  34. 34.
    Luo, J., Blum, R. S., Greenstein, L. J., Cimini, L. J., & Haimovich, A. M. (2004). New approaches for cooperative use of multiple antennas in ad hoc wireless networks. In Proceedings of IEEE vehicular technology conference (pp. 2769–2773).Google Scholar
  35. 35.
    Ibrahim, A. S., Sadek, A. K., Su, W., & Liu, K. R. (2008). Cooperative communications with relay-selection: When to cooperate and whom to cooperate with? IEEE Transactions on Wireless Communications, 7(7), 2814–2827.CrossRefGoogle Scholar
  36. 36.
    Zhou, Z., Zhou, S., Cui, J. H., & Cui, S. (2008). Energy-efficient cooperative communication based on power control and selective single-relay in wireless sensor networks. IEEE Transactions on Wireless Communications, 7(8), 3066–3078.CrossRefGoogle Scholar
  37. 37.
    Jakllari, G., Krishnamurthy, S. V., Faloutsos, M., Krishnamurthy, P. V., & Ercetin, O. (2007). A cross-layer framework for exploiting virtual MISO links in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 6(6), 579–594.CrossRefGoogle Scholar
  38. 38.
    Ju, M., & Kim, I. M. (2009). ML performance analysis of the decode-and-forward protocol in multi-hop networks. In IEEE international conference on distributed computing systems workshops (pp. 499–503).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringThapar UniversityPatialaIndia

Personalised recommendations