Wireless Personal Communications

, Volume 95, Issue 3, pp 3295–3320 | Cite as

Improving the Physical Layer Security in Cooperative Networks with Multiple Eavesdroppers

  • Fatemeh-Sadat Saeidi-Khabisi
  • Vahid Tabataba Vakili
  • Dariush Abbasi-Moghadam


Physical layer security is an efficient technique to realize security in wireless network without relying on conventional cryptographic techniques. In cooperative networks with secrecy constraints, joint relay and jammer selection is a promising approach for improving the security of wireless communications. We need to apply more techniques in order to achieve more effective security in contrast to the mentioned method. In this paper, we propose three techniques to increase the secrecy as follows: Firstly, we introduce a new criterion which decreases the rate at the eavesdroppers. Next, a new relay selection schemes are proposed, where two of the available relays are selected for data transmission. Therefore, the secrecy rate is increased considerably. Finally, we propose a sub-optimal power allocation solution for jammer nodes. Sub-optimal power of the jammer nodes vary according to the type of scenario, location of the eavesdroppers, and the destination. The sub-optimal power allocation to the jammer nodes causes more eavesdroppers confusion. As a result, the total secrecy rate is increased. Simulation and analytical results demonstrate the performance improvement of the proposed techniques.


Physical layer security Multi-eavesdropper networks Cooperative jamming Improving the rate at the eavesdropper Increasing the number of relays Power allocation 


  1. 1.
    Silva, E., Dos Santos, A., Albini, L. C. P., & Lima, M. N. (2008). Identity-based key management in mobile ad hoc networks: techniques and applications. IEEE Wireless Communications, 15(5), 46–52.CrossRefGoogle Scholar
  2. 2.
    Barros, J., & Rodrigues, M. R. (2006). Secrecy capacity of wireless channels. In 2006 IEEE International Symposium on Information Theory (pp. 356–360). IEEE.Google Scholar
  3. 3.
    Bloch, M., Barros, J., Rodrigues, M. R., & McLaughlin, S. W. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Liu, R., Maric, I., Spasojevic, P., & Yates, R. D. (2008). Discrete memoryless interference and broadcast channels with confidential messages: Secrecy rate regions. IEEE Transactions on Information Theory, 54(6), 2493–2507.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Csiszár, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(3), 339–348.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Wyner, A. D. (1975). The wire-tap channel. Bell Labs Technical Journal, 54(8), 1355–1387.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Vicario, J. L., Bel, A., Lopez-Salcedo, J. A., & Seco, G. (2009). Opportunistic relay selection with outdated CSI: Outage probability and diversity analysis. IEEE Transactions on Wireless Communications, 8(6), 2872–2876.CrossRefGoogle Scholar
  8. 8.
    Zhang, W., Duan, D., & Yang, L. (2009). Relay selection from a battery energy efficiency perspective. In Military Communications Conference, MILCOM 2009, IEEE (pp. 1–7). IEEE.Google Scholar
  9. 9.
    Seyfi, M., Muhaidat, S., & Liang, J. (2011). Performance analysis of relay selection with feedback delay and channel estimation errors. IEEE Signal Processing Letters, 18(1), 67–70.CrossRefMATHGoogle Scholar
  10. 10.
    Krikidis, I., Thompson, J., McLaughlin, S., & Goertz, N. (2008). Amplify-and-forward with partial relay selection. IEEE Communications Letters, 12(4), 235–237.CrossRefGoogle Scholar
  11. 11.
    Bletsas, A., Shin, H., & Win, M. Z. (2007). Outage analysis for co-operative communication with multiple amplify-and-forward relays. Electronics Letters, 43(6), 353–355.CrossRefGoogle Scholar
  12. 12.
    Kim, J., Ikhlef, A., & Schober, R. (2012). Combined relay selection and cooperative beamforming for physical layer security. Journal of Communications and Networks, 14(4), 364–373.CrossRefGoogle Scholar
  13. 13.
    Liu, Y., & Petropulu, A. P. (2012). Relay selection and scaling law in destination assisted physical layer secrecy systems. In Statistical Signal Processing Workshop (SSP), IEEE (pp. 381–384). IEEE.Google Scholar
  14. 14.
    Wang, L., Ke, T., Song, M., Wei, Y., & Teng, Y. (2011). Research on secrecy capacity oriented relay selection for mobile cooperative networks. In 2011 IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS) (pp. 443–447). IEEE.Google Scholar
  15. 15.
    Cai, C., Cai, Y., & Yang, W. (2011). Secrecy rates for relay selection in OFDMA networks. In CMC (pp. 158–160).Google Scholar
  16. 16.
    Yan, S., Mugen, P., Wenbo, W., Dong, L., & Manzoor, A. (2012). Relay self-selection for secure cooperative in amplify-and-forward netowrks. In Proceedings of the 7th International Conference on Communications and Networking in China (CHINACOM’12) (pp. 581–585).Google Scholar
  17. 17.
    Sakran, H., Shokair, M., Nasr, O., El-Rabaie, S., & El-Azm, A. A. (2012). Proposed relay selection scheme for physical layer security in cognitive radio networks. IET Communications, 6(16), 2676–2687.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Luo, S., Godrich, H., Petropulu, A., & Poor, H. V. (2011). A knapsack problem formulation for relay selection in secure cooperative wireless communication. In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2512–2515). IEEE.Google Scholar
  19. 19.
    Bassily, R., & Ulukus, S. (2013). Deaf cooperation and relay selection strategies for secure communication in multiple relay networks. IEEE Transactions on Signal Processing, 61(6), 1544–1554.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Krikidis, I., Thompson, J. S., & McLaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions on Wireless Communications, 8(10), 5003–5011.CrossRefGoogle Scholar
  21. 21.
    Krikidis, I. (2010). Opportunistic relay selection for cooperative networks with secrecy constraints. IET Communications, 4(15), 1787–1791.CrossRefGoogle Scholar
  22. 22.
    Al-nahari, A. Y., Krikidis, I., Ibrahim, A. S., Dessouky, M. I., & Abd El-Samie, F. E. (2014). Relaying techniques for enhancing the physical layer secrecy in cooperative networks with multiple eavesdroppers. Transactions on Emerging Telecommunications Technologies, 25(4), 445–460.CrossRefGoogle Scholar
  23. 23.
    Li, J., Petropulu, A. P., & Weber, S. (2010). Optimal cooperative relaying schemes for improving wireless physical layer security. arXiv preprint arXiv:1001.1389.
  24. 24.
    Lai, L., & El Gamal, H. (2008). The relay–eavesdropper channel: Cooperation for secrecy. IEEE Transactions on Information Theory, 54(9), 4005–4019.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Fatemeh-Sadat Saeidi-Khabisi
    • 1
  • Vahid Tabataba Vakili
    • 1
  • Dariush Abbasi-Moghadam
    • 2
  1. 1.Department of Electrical Engineering, Faculty of Electrical EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Department of Electrical EngineeringShahid Bahonar University of KermanKermanIran

Personalised recommendations