Advertisement

Wireless Personal Communications

, Volume 95, Issue 2, pp 1759–1779 | Cite as

Sparsity Enhancement for Sparse Channel Estimation Using Non-orthogonal Basis

  • Somayeh MahmoodiEmail author
  • Mohammad Javad Omidi
  • Abolfazl Mehbodniya
  • Fumiyuki Adachi
Article
  • 196 Downloads

Abstract

Compressed sensing framework can be employed to improve channel estimation and enhance spectral and/or energy efficiency for communication systems. To take advantage of compressed sensing, special basis are required to model a multipath fading channel with sparse channel coefficients. To apply compressed sensing method a set of orthogonal basis are required, where the coefficients meet the sparsity criteria. However, the orthogonality condition for the basis may be a limiting factor to improve the sparsity of the channel coefficients. In this paper we relax the orthogonality condition and use a dictionary learning algorithm such as K-SVD to find a set of new basis with sparse coefficients. Using this method results in a channel model with improved sparsity and better MSE performance for channel estimation. An OFDM system is considered over a sparse doubly-selective channel and the proposed method is investigated through simulation. The simulation results show that the enhanced channel sparsity achieved based on the proposed method, leads to improved channel estimation performance.

Keywords

Compressed sensing Sparsifying basis The restricted isometry property Orthogonal frequency-division modulation Sparse channel estimation K-SVD algorithm 

References

  1. 1.
    Bajwa, W., Haupt, J., Sayeed, A., & Nowak, R. (2010). Compressed channel sensing: A new approach to estimating sparse multipath channels. Proceedings of the IEEE, 98(6), 1058–1076.CrossRefGoogle Scholar
  2. 2.
    Taubock, G., Hlawatsch, F., Eiwen, D., & Rauhut, H. (2010). Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing. IEEE Journal Selected Topics in Signal Processing, 4(2), 255–271.CrossRefGoogle Scholar
  3. 3.
    Li, W., & Preisig, J. (2007). Estimation of rapidly time-varying sparse channels. IEEE Journal of Oceanic Engineering, 32(4), 927–939.CrossRefGoogle Scholar
  4. 4.
    Sharp, M., & Scaglione, A. (2008). Application of sparse signal recovery to pilot-assisted channel estimation. In IEEE international conference acoustics, speech and signal processing (ICASSP) (pp. 3469–3472).Google Scholar
  5. 5.
    Senol, H. (2015). Joint channel estimation and symbol detection for OFDM systems in rapidly time-varying sparse multipath channels. Wireless Personal Communications, 82(3), 1161–1178.CrossRefGoogle Scholar
  6. 6.
    Cheng, P., Chen, Z., Rui, Y., Guo, Y. J., Gui, L., Tao, M., et al. (2013). Channel estimation for ofdm systems over doubly selective channels: A distributed compressive sensing based approach. IEEE Transactions on Communications, 61(10), 4173–4185.CrossRefGoogle Scholar
  7. 7.
    Qin, Q., Gui, L., Gong, B., Ren, X., & Chen, W. (2016). Structured distributed compressive channel estimation over doubly selective channels. IEEE Transactions on Broadcasting, 62(3), 521–531.CrossRefGoogle Scholar
  8. 8.
    Qi, C., Yue, G., Wu, L., Huang, Y., & Nallanathan, A. (2015). Pilot design schemes for sparse channel estimation in OFDM systems. IEEE Transactions on Vehicular Technology, 64(4), 1493–1505.CrossRefGoogle Scholar
  9. 9.
    Khosravi, M., & Mashhadi, S. (2015). Joint pilot power and pattern design for compressive OFDM channel estimation. IEEE Communications Letters, 19(1), 50–53.CrossRefGoogle Scholar
  10. 10.
    Mohammadian, R., Amini, A., & Khalaj, B. H. (2016). Deterministic pilot design for sparse channel estimation in MISO/multi-user OFDM systems. IEEE Transactions on Wireless Communications.Google Scholar
  11. 11.
    Masoumian, S. H. S., & Tazehkand, B. M. (2015). Greedy deterministic pilot pattern algorithms for OFDM sparse channel estimation. Wireless Personal Communications, 84(2), 1119–1132.CrossRefGoogle Scholar
  12. 12.
    Scaglione, A., & Li, X. (2011). Compressed channel sensing: Is the restricted isometry property the right metric? In 17th international conference digital signal processing (DSP) (pp. 1–8).Google Scholar
  13. 13.
    Sharp, M., & Scaglione, A. (2011). A useful performance metric for compressed channel sensing. IEEE Transactions on Signal Processing, 59(6), 2982–2988.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhou, F., Tan, J., Fan, X., & Zhang, L. (2014). A novel method for sparse channel estimation using super-resolution dictionary. EURASIP Journal Advances in Signal Processing. doi: 10.1109/TSP.2007.893198.Google Scholar
  15. 15.
    Slepian, D. (1978). Prolate spheroidal wave functions, fourier analysis, and uncertainty—V: The discrete case. Bell System Technical Journal, 57(5), 1371–1430.CrossRefzbMATHGoogle Scholar
  16. 16.
    Eldar, Y., & Kutyniok, G. (2012). Compressed sensing: Theory and applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  17. 17.
    Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.CrossRefGoogle Scholar
  18. 18.
    Leus, G., Tang, Z., & Banelli, P. (2011). Estimation of time-varying channels – a block approach. In F. Hlawatsch & G. Matz (Eds.), Wireless communications over rapidly time-varying channels (pp. 155–197). Oxford: Academic Press.CrossRefGoogle Scholar
  19. 19.
    Rubinstein, R., Bruckstein, A., & Elad, M. (2010). Dictionaries for sparse representation modeling. Proceedings of the IEEE, 98(6), 1045–1057.CrossRefGoogle Scholar
  20. 20.
    Candès, E. J., Eldar, Y. C., Needell, D., & Randall, P. (2011). Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1), 59–73.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tropp, J., & Wright, S. (2010). Computational methods for sparse solution of linear inverse problems. Proceedings of the IEEE, 6, 948–958.CrossRefGoogle Scholar
  22. 22.
    Tang, Z., Cannizzaro, R., Leus, G., & Banelli, P. (2007). Pilot-assisted time-varying channel estimation for OFDM systems. IEEE Transactions on Signal Processing, 55(5), 2226–2238.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Somayeh Mahmoodi
    • 1
    Email author
  • Mohammad Javad Omidi
    • 1
  • Abolfazl Mehbodniya
    • 2
  • Fumiyuki Adachi
    • 2
  1. 1.Electrical and Computer Engineering DepartmentIsfahan University of TechnologyIsfahanIran
  2. 2.Research Organization of Electrical CommunicationTohoku UniversityAoba-ku, SendaiJapan

Personalised recommendations