Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Incremental Fixed-Gain Opportunistic AF in Two-Way Relaying Networks

Abstract

In this paper, we investigate an incremental semi-blind opportunistic amplify-and-forward (AF) protocol in two-way relaying communication. This protocol is analyzed in terms of the average sum-rate and average symbol error rate considering independent Rayleigh fading channels. Bounds of these performance criteria are provided in closed-form expressions for the semi-blind and channel state information (CSI)-assisted relaying. The performance of the incremental semi-blind opportunistic AF relaying is compared to the performance of incremental CSI-assisted opportunistic AF relaying in order to prove the validity of the proposed analysis. We illustrate that the incremental semi-blind opportunistic AF relaying reduces significantly the system complexity for the cost of a slight decrease in the system performance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Han, Y., Ting, S. H., Ho, C. K., & Chin, W. H. (2009). Performance bounds for two-way amplify-and-forward relaying. IEEE Transactions on Wireless Communications, 8(1), 432–439.

  2. 2.

    Lo, E. S., & Letaief, K. B. (2011). Design and outage performance analysis of relay-assisted two-way wireless communications. IEEE Transactions on Communications, 59(4), 1163–1174.

  3. 3.

    Rankov, B., & Wittneben, A. (2007). Spectral efficient protocols for half-duplex fading relay channels. IEEE Journal on Selected Areas in Communications, 25(2), 379–389.

  4. 4.

    Li, Q., Ting, S. H., Pandharipande, A., & Han, Y. (2009). Adaptive two-way relaying and outage analysis. IEEE Transactions on Wireless Communications, 8(6), 3288–3299.

  5. 5.

    Rui, X., Hou, J., & Zhou, L. (2013). Performance analysis of full-duplex relaying with parial relay selection. Wireless Personal Communications, 72(2), 1327–1332.

  6. 6.

    Zhang, Y., Ma, Y., & Tafazolli, R. (2010). Power allocation for bidirectional AF relaying over rayleigh fading channels. IEEE Communications Letters, 14(2), 145–147.

  7. 7.

    Yang, Y., Ge, J. H., Ji, Y. C., & Gao, Y. (2011). Performance analysis and instantaneous power allocation for two-way opportunistic amplify-andforward relaying. IET Communications, 5(10), 1430–1439.

  8. 8.

    Hwang, K.-S., Ko, Y.-C., & Alouini, M.-S. (2009) Performance bounds for two-way amplify-and-forward relaying based on relay path selection. In Vehicular technology conference. IEEE 69th VTC Spring.

  9. 9.

    Wided, H. A., Noureddine, H., & Soumaya, M. (2013). Semi-blind amplify-and-forward in two-way relaying networks. Annals of Telecommunications, 69(9), 497–508.

  10. 10.

    Alouane, W. H., & Hamdi, N. (2014). Semi-blind two-way AF relaying over Nakagami-m fading environment. Annals of Telecommunications, 70(1), 49–62.

  11. 11.

    Zhang, Z., Zhao, M., Zhang, S., & Zhou, W. (2012). Relay selection and power allocation based on incremental relaying for two-way relay network with asymmetric traffics. In IEEE international conference on communications in China (ICCC).

  12. 12.

    Ding, H., Ge, J., Benevides da Costa, D., & Jiang, Z. (2012). Two birds with one stone: exploiting direct links for multiuser two-way relaying systems. IEEE Transactions on Wireless Communications, 11(1), 54–59.

  13. 13.

    MinChul, J., & Kim, I.-M. (2010). Relay selection with ANC and TDBC protocols in bidirectional relay networks. IEEE Transactions on Communications, 58(12), 3500–3511.

  14. 14.

    Hasna, M. O., & Alouini, M.-S. (2004). A performance study of dual-hop transmissions with fixed gain relays. IEEE Transactions on Wireless Communications, 3(6), 1963–1968.

  15. 15.

    Gradshteyn, I. S., & Ryzhik, I. M. (1994). Table of integrals, series, and products (5th ed.). San Diego, CA: Academic Press.

  16. 16.

    Hussain, S. I., Hasna, M. O., & Alouini, M. S. (2012). Performance analysis of selective cooperation with fixed gain relays in Nakagami-m channels. Physical Communication, 5(3), 272–279.

  17. 17.

    Proakis, J. G. (2001). Digital communications (4th edn.). Singapore: McGraw-Hill Book Companies, Inc.

  18. 18.

    Anghel, P. A., & Mostafa, K. (2004). Exact symbol error probability of a Cooperative network in a Rayleigh-fading environment. IEEE Transactions on Wireless Communications, 3(5), 1416–1421.

Download references

Author information

Correspondence to Wided Hadj Alouane.

Appendices

Appendix 1

The average sum-rate of the direct transmission in two-way system over Rayleigh fading channels can be written as

$$\begin{aligned} C_{D} =\frac{1}{2ln\left( 2 \right) } \int _{0}^{\infty } ln\left( x^{2}\right) f_{\varGamma }\left( x \right) dx \end{aligned}$$
(71)

where \(f_{\varGamma }\left( x\right)\) is the PDF of \(\varGamma\) given as

$$\begin{aligned} f_{\varGamma }\left( x\right) =\frac{1}{\overline{\varGamma }} \exp \left( \frac{-x}{\overline{\varGamma }} \right) \end{aligned}$$
(72)

(71) can be rewritten after simple manipulations as

$$\begin{aligned} C_{D} =\frac{1}{4ln\left( 2 \right) }\int _{0}^{\infty } ln\left( t \right) \frac{f_{\varGamma }\left( t^{\frac{1}{2}}\right) }{t^{\frac{1}{2}}} dt=\frac{1}{4ln\left( 2 \right) \overline{\varGamma }_{N} }\int _{0}^{\infty } \frac{ln\left( t \right) }{\sqrt{t}} \exp \left( \frac{-\sqrt{t}}{\overline{\varGamma }_{N}}\right) dt \end{aligned}$$
(73)

The above integral can be written as

$$\begin{aligned} \int _{0}^{\infty } \frac{ln\left( t \right) }{\sqrt{t}} \exp \left( \frac{-\sqrt{t}}{\overline{\varGamma }_{N}}\right) dt=4 \overline{\varGamma }_{N}\left( -\zeta +ln\left( \overline{\varGamma }_{N}\right) \right) \end{aligned}$$
(74)

By substituting (74) into (73), we can obtain (43).

Appendix 2

The end-to-end SNRs given in (30) and (31) [16] can be approximated by their upper bounds as

$$\begin{aligned} \varGamma ^{SB }_{N_2\rightarrow N_1}\le \frac{P\sqrt{P_{R_{i}}}}{2\sqrt{2}}\sqrt{\frac{C_{1}}{C_{2}\left( C_{1}+C_{2} \right) }} \varGamma _{R_{i}N_{2}} \sqrt{\varGamma _{N_{1}R_{i}}} \end{aligned}$$
(75)

and

$$\begin{aligned} \varGamma ^{SB}_{N_1\rightarrow N_2} \le \frac{P\sqrt{P_{R_{i}}}}{2\sqrt{2}}\sqrt{\frac{C_{2}}{C_{1}\left( C_{1}+C_{2} \right) }} \varGamma _{N_{1}R_{i}} \sqrt{\varGamma _{R_{i}N_{2}}} \end{aligned}$$
(76)

respectively.

The equivalent SNR can be approximated by its upper bound as

$$\begin{aligned} \frac{\frac{P^{2}P^{2}_{R_{i}}}{4} \varGamma ^{2}_{N_{1}R_{i}} \varGamma ^{2}_{R_{i}N_{2}}}{\kappa _{i} } \le \frac{P^{2}P_{R_{i}}}{8\left( C_{1}+C_{2} \right) } \left( \varGamma _{N_{1}R_{i}} \varGamma _{R_{i}N_{2}}\right) ^{\frac{3}{2}} \end{aligned}$$
(77)

where \(\kappa _{i}\) is defined in (49).

The second term in (77) can be written as

$$\begin{aligned} \left( \varGamma _{N_{1}R_{i}} \varGamma _{R_{i}N_{2}}\right) ^{\frac{3}{2}}\, =\, \left( \frac{\varGamma _{N_{1}R_{i}} \varGamma _{R_{i}N_{2}}}{\varGamma _{N_{1}R_{i}} +\varGamma _{R_{i}N_{2}}}\right) ^{\frac{3}{2}}\left( \varGamma _{N_{1}R_{i}} +\varGamma _{R_{i}N_{2}}\right) ^{\frac{3}{2}} \end{aligned}$$
(78)

The first term in (78) can be approximated by its upper bound as in [18]

$$\begin{aligned} \left( \frac{\varGamma _{N_1R_i}\varGamma _{R_iN_2}}{\varGamma _{N_1R_i}+\varGamma _{R_iN_2}}\right) ^{\frac{3}{2}} \le \left( min\left( \varGamma _{N_1R_i}, \varGamma _{R_iN_2}\right) \right) ^{\frac{3}{2}} \end{aligned}$$
(79)

The last term in (78) can be rewritten using (24) and (25) as

$$\begin{aligned} \left( \varGamma _{N_1R_i}+\varGamma _{R_iN_2} \right) ^{\frac{3}{2}}\,= \, \left( \frac{C_{1}+C_{2}-2}{P}\right) ^{\frac{3}{2}} \end{aligned}$$
(80)

By substituting (78), (79) and (80) into (77), we can obtain (51).

Appendix 3

The upper bound of the average sum-rate for incremental semi-blind opportunistic AF relaying over Rayleigh fading channels can be written as

$$\begin{aligned} C_{R}=\frac{1}{3ln\left( 2 \right) } \int _{0}^{\infty } ln\left( A_{i} x^{\frac{3}{2}}\right) f_{\varGamma }\left( x \right) dx \end{aligned}$$
(81)

where \(A_{i}=\frac{\sqrt{P}\;P_{R_i}\left( C_{1}+C_{2}-2\right) \sqrt{C_{1}+C_{2}-2}}{8\left( C_{1}+C_{2}\right) }\) and \(f_{\varGamma }\left( x\right)\) is the PDF of \(\varGamma\) given as \(\varGamma =max\left( \varGamma _{1},\ldots ,\varGamma _{L}\right)\).

Equation (81) can be rewritten after simple manipulations as

$$\begin{aligned} C_{R}&=\frac{1}{3ln\left( 2 \right) }\int _{0}^{\infty } ln\left( A_{i} \; t \right) \frac{2 f_{\varGamma }\left( t^{\frac{2}{3}}\right) }{3t^{\frac{1}{3}}} dt \nonumber \\&=\frac{L}{3ln\left( 2 \right) }\int _{0}^{\infty }\left( ln\left( A_{i}\right) +ln\left( t \right) \right) \left( 1- \exp \left( \frac{-t^{\frac{2}{3}}}{\overline{\varGamma }_{b}}\right) \right) ^{L-1} \frac{2\exp \left( \frac{-t^{\frac{2}{3}}}{\overline{\varGamma }_{b}}\right) }{3\overline{\varGamma }_{b}t^{\frac{1}{3}}} dt \nonumber \\&=\frac{ln\left( A_{i}\right) }{3ln\left( 2 \right) }+\frac{L}{3ln\left( 2 \right) }\int _{0}^{\infty } ln\left( t \right) \sum _{l=0}^{L-1}\left( _{l}^{L-1}\right) \frac{2 \left( -1\right) ^{l} \exp \left( \frac{-\left( l+1\right) t^{\frac{2}{3}}}{\overline{\varGamma }_{b}}\right) }{3\overline{\varGamma }_{b}t^{\frac{1}{3}}} dt \nonumber \\&=\frac{ln\left( A_{i}\right) }{3ln\left( 2 \right) }+\frac{L}{2ln\left( 2 \right) } \sum _{l=0}^{L-1}\left( _{l}^{L-1}\right) \left( -1\right) ^{l+1} \frac{\xi +ln\left( \frac{1+l}{\overline{\varGamma }_{b}} \right) }{1+l} \end{aligned}$$
(82)

Appendix 4

The upper bound of the average sum-rate for incremental CSI-assisted opportunistic AF relaying over Rayleigh fading channels can be written as

$$\begin{aligned} C_{R}=\frac{1}{3ln\left( 2 \right) } \int _{0}^{\infty } ln\left( \frac{P^{2}}{\mu _{i}} x^{2}\right) f_{\varGamma }\left( x \right) dx \end{aligned}$$
(83)

(83) can be rewritten after simple manipulations as

$$\begin{aligned} C_{R}&=\frac{1}{3ln\left( 2 \right) }\int _{0}^{\infty } ln\left( \frac{P^{2}}{\mu _{i}} \; t \right) \frac{f_{\varGamma }\left( \sqrt{t}\right) }{2\sqrt{t}} dt \nonumber \\&=\frac{L}{3ln\left( 2 \right) }\int _{0}^{\infty }\left( ln\left( \frac{P^{2}}{\mu _{i}} \right) +ln\left( t \right) \right) \left( 1- \exp \left( \frac{-\sqrt{t}}{\overline{\varGamma }_{b}}\right) \right) ^{L-1} \frac{\exp \left( \frac{-\sqrt{t}}{\overline{\varGamma }_{b}}\right) }{2\overline{\varGamma }_{b}\sqrt{t}} dt\nonumber \\&=\frac{ln\left( \frac{P^{2}}{\mu _{i}}\right) }{3ln\left( 2 \right) }+\frac{L}{3ln\left( 2 \right) }\int _{0}^{\infty } ln\left( t \right) \sum _{l=0}^{L-1}\left( _{l}^{L-1}\right) \frac{\left( -1\right) ^{l} \exp \left( \frac{-\left( l+1\right) \sqrt{t}}{\overline{\varGamma }_{b}}\right) }{2\overline{\varGamma }_{b}\sqrt{t}} dt \nonumber \\&=\frac{ln\left( \frac{P^{2}}{\mu _{i}}\right) }{3ln\left( 2 \right) }+\frac{2L}{3ln\left( 2 \right) } \sum _{l=0}^{L-1}\left( _{l}^{L-1}\right) \left( -1\right) ^{l+1} \frac{\xi +ln\left( \frac{1+l}{\overline{\varGamma }_{b}} \right) }{1+l} \end{aligned}$$
(84)

Appendix 5

Case of \(x< \varGamma _{th}\)

The \(f_{\varGamma _{N_{2}}} \left( x\right)\) can be written as

$$\begin{aligned} f_{\varGamma _{N_{2}}} \left( x\right) =\int _{0}^{x} f_{\varGamma _{N}}\left( x-\varphi \right) f_{\varGamma ^{SB}_{N_1\rightarrow N_2}}\left( \varphi \right) d\varphi \end{aligned}$$
(85)

By substituting (60) and (61) into (85), we get

$$\begin{aligned} f_{\varGamma _{N_{2}}} \left( x\right)&= \frac{L }{\overline{\varGamma }_{s1} \overline{\varGamma }_{N}\left( 1-\exp \left( \frac{-\varGamma _{th}}{\overline{\varGamma }_{N}}\right) \right) } \int _{0}^{x} \exp \left( \frac{-\left( x-\varphi \right) }{\overline{\varGamma }_{N}}\right) \exp \left( \frac{-\varphi }{\overline{\varGamma }_{s1}}\right) \nonumber \\&\quad \times \,\left( 1- \exp \left( \frac{-\varphi }{\overline{\gamma }_{s1}}\right) \right) ^{L-1} d\varphi \end{aligned}$$
(86)

With the help of the binomial expansion \(\left( 1-x \right) ^{k}=\sum _{i=0}^{k} \left( {\begin{array}{c}k\\ i\end{array}}\right) \left( -1 \right) ^{i} x^{i}\) and after simple mathematical manipulations, we can obtain (62) for \(x<\varGamma _{th}\).

Case of \(x\ge \varGamma _{th}\)

The \(f_{\varGamma _{N_{2}}} \left( x\right)\) can be written as

$$\begin{aligned} f_{\varGamma _{N_{2}}} \left( x\right)&=\int _{0}^{x} f_{\varGamma _{N}}\left( \varphi \right) f_{\varGamma ^{SB }_{N_1\rightarrow N_2}}\left( x-\varphi \right) d\varphi \nonumber \\&=\int _{0}^{\varGamma _{th}} f_{\varGamma _{N}}\left( \varphi \right) f_{\varGamma ^{SB }_{N_1\rightarrow N_2}}\left( x-\varphi \right) d\varphi +\int _{\varGamma _{th}}^{x} f_{\varGamma _{N}}\left( \varphi \right) f_{\varGamma ^{SB }_{N_1\rightarrow N_2}}\left( x-\varphi \right) d\varphi \end{aligned}$$
(87)

From (61), \(f_{\varGamma _{N}}\left( x \right) =0\) for \(x\ge \varGamma _{th}\). Hence, (87) can be rewritten as

$$\begin{aligned} f_{\varGamma _{N_{2}}} \left( x\right) =\int _{0}^{\varGamma _{th}} f_{\varGamma _{N}}\left( \varphi \right) f_{\varGamma ^{SB }_{N_1\rightarrow N_2}}\left( x-\varphi \right) d\varphi \end{aligned}$$
(88)

By substituting (60) and (61) into (88), we get

$$\begin{aligned} f_{\varGamma _{N_{2}}} \left( x\right)&= \frac{L }{\overline{\varGamma }_{s1} \overline{\varGamma }_{N}\left( 1-\exp \left( \frac{-\varGamma _{th}}{\overline{\varGamma }_{N}}\right) \right) } \int _{0}^{\varGamma _{th}} \exp \left( \frac{-\varphi }{\overline{\varGamma }_{N}}\right) \exp \left( \frac{-\left( x-\varphi \right) }{\overline{\varGamma }_{s1}}\right) \nonumber \\&\quad \times \,\left( 1- \exp \left( \frac{-\left( x-\varphi \right) }{\overline{\varGamma }_{s1}}\right) \right) ^{L-1} d\varphi \end{aligned}$$
(89)

Using the binomial expansion given after (86) and after some mathematical manipulations, we can obtain (62) for \(x\ge \varGamma _{th}\).

Appendix 6

In this paper, we consider incremental relaying when the decision is operated at the end-receiver. In this case, (63) can be rewritten for BPSK modulation as

$$\begin{aligned} P_{coop} = \underbrace{\int _{0}^{\varGamma _{th}} \frac{1}{2} \;erfc\left( \sqrt{x} \right) f_{\varGamma _{N_{2}}} \left( x\right) dx }_{I_{1}} +\underbrace{\int _{\varGamma _{th}}^{\infty } \frac{1}{2} \;erfc\left( \sqrt{x} \right) f_{\varGamma _{N_{2}}} \left( x\right) dx }_{I_{2}} \end{aligned}$$
(90)

\(I_{1}\) and \(I_{2}\) can be resolved using (62) as

$$\begin{aligned} I_{1}&= \frac{L}{2 \left( 1-\exp \left( \frac{-\varGamma _{th}}{\overline{\varGamma }_{N}}\right) \right) }\sum _{i=0}^{L-1} \left( {\begin{array}{c}L-1\\ i\end{array}}\right) \left( -1\right) ^{i} \frac{1}{\left( 1+i\right) \overline{\varGamma }_{N}-\overline{\varGamma }_{s1}} \nonumber \\&\quad \times \,\left[ l\left( \frac{1}{\overline{\varGamma }_{N}},\varGamma _{th}\right) -l\left( \frac{1+i}{\overline{\varGamma }_{s1}},\varGamma _{th}\right) \right] \end{aligned}$$
(91)

and

$$\begin{aligned} I_{2}&= \frac{L}{2 \left( 1-\exp \left( \frac{-\varGamma _{th}}{\overline{\varGamma }_{N}}\right) \right) }\sum _{i=0}^{L-1} \left( {\begin{array}{c}L-1\\ i\end{array}}\right) \left( -1\right) ^{i} \frac{1}{\overline{\varGamma }_{s1}-\left( 1+i\right) \overline{\varGamma }_{N}} \nonumber \\&\quad \times \,\left[ 1- \exp \left( -\varGamma _{th} \left( \frac{1}{\overline{\varGamma }_{N}}- \frac{\left( 1+i\right) }{\overline{\varGamma }_{s1}} \right) \right) \right] \lambda \left( \frac{1+i}{\overline{\varGamma }_{s1}},\varGamma _{th}\right) \end{aligned}$$
(92)

respectively.

Where \(l\left( \cdot ,\cdot \right)\) and \(\lambda \left( \cdot ,\cdot \right)\) are defined in (65) and (66), respectively.

By substituting (91) and (92) into (90), we can obtain (64).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hadj Alouane, W., Hamdi, N. Incremental Fixed-Gain Opportunistic AF in Two-Way Relaying Networks. Wireless Pers Commun 95, 1373–1396 (2017). https://doi.org/10.1007/s11277-016-3852-1

Download citation

Keywords

  • Incremental
  • Semi blind
  • CSI-assisted
  • Relaying
  • Two-way