Wireless Personal Communications

, Volume 94, Issue 4, pp 3285–3302 | Cite as

Influence of Channel Information Imperfection on Outage Probability of Cooperative Cognitive Networks with Partial Relay Selection

  • Khuong Ho-Van


Influence of channel information imperfection on outage probability of cooperative cognitive networks with partial relay selection over independent and non-identical Rayleigh fading channels and under peak transmit power constraint and interference power constraint is thoroughly analyzed in this paper. To eliminate time-consuming simulations, we propose both exact and asymptotic outage probability expressions in closed-form, which facilitate in quickly evaluating this influence in key operation parameters and acquiring useful insights into performance limits. For comparison, we also derive similar expressions for two benchmark communications schemes in cognitive radio networks, namely direct transmission and dual-hop communications with partial relay selection. Various results show considerable system performance deterioration and performance saturation owing to channel information imperfection, and superiority of cooperative communications to direct transmission and dual-hop communications.


Partial relay selection Channel information imperfection Cognitive radio Maximum transmit power Interference power 



This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 102.04-2014.42.


  1. 1.
    FCC. (2002). Spectrum policy task force report. ET Docket 02–135, Nov. 2002.Google Scholar
  2. 2.
    Mitola, J, I. I. I. (2000). Cognitive radio: An integrated agent architecture for software defined radio. Sweden: Royal Institute of Technology (KTH).Google Scholar
  3. 3.
    Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.CrossRefGoogle Scholar
  4. 4.
    Mokari, N., Parsaeefard, S., Saeedi, H., Azmi, P., & Hossain, E. (2015). Secure robust ergodic uplink resource allocation in relay-assisted cognitive radio networks. IEEE Transactions on Signal Processing, 63(2), 291–304.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hanif, M., Yang, H. C., & Alouini, M. S. (2015). Receive antenna selection for underlay cognitive radio with instantaneous interference constraint. IEEE Signal Processing Letters, 22(6), 738–742.CrossRefGoogle Scholar
  6. 6.
    Chen, Y., Ge, J., & Bu, Q. (2014). Outage and diversity analysis of cognitive relay networks with direct link under interference constraints over Nakagami-m fading. In Proceedings IEEE CIT, Xi’an, Shaanxi, China, 11–13 Sep. 2014 (pp. 88–93).Google Scholar
  7. 7.
    Guimaraes, F. R. V., da Costa, D. B., Tsiftsis, T. A., Cavalcante, C. C., & Karagiannidis, G. K. (2014). Multi-user and multi-relay cognitive radio networks under spectrum sharing constraints. IEEE Transactions on Vehicular Technology, 63(1), 433–439.CrossRefGoogle Scholar
  8. 8.
    Si, J., Li, Z., Huang, H., Chen, J., & Gao, R. (2012). Capacity analysis of cognitive relay networks with the PU’s interference. IEEE Communications Letters, 16(12), 2020–2023.CrossRefGoogle Scholar
  9. 9.
    Si, J., Li, Z., Chen, X., Hao, B. J., & Liu, Z. J. (2011). On the performance of cognitive relay networks under primary user’s outage constraint. IEEE Communications Letters, 15(4), 422–424.CrossRefGoogle Scholar
  10. 10.
    Tourki, K., Qaraqe, K. A., & Alouini, M. S. (2013). Outage analysis for underlay cognitive networks using incremental regenerative relaying. IEEE Transactions on Vehicular Technology, 62(2), 721–734.CrossRefGoogle Scholar
  11. 11.
    Yan, Z., Zhang, X., & Wang, W. (2011). Exact outage performance of cognitive relay networks with maximum transmit power limits. IEEE Communications Letters, 15(12), 1317–1319.CrossRefGoogle Scholar
  12. 12.
    Hong, J. P., Hong, B., Ban, T. W., & Choi, W. (2012). On the cooperative diversity gain in underlay cognitive radio systems. IEEE Transactions on Communications, 60(1), 209–219.CrossRefGoogle Scholar
  13. 13.
    Bao, V. N. Q., & Duong, T. Q. (2012). Exact outage probability of cognitive underlay DF relay networks with best relay selection. IEICE Transactions on communications, E95–B(6), 2169–2173.CrossRefGoogle Scholar
  14. 14.
    Liping, L., Zhang, P., Zhang, G., & Qin, J. (2011). Outage performance for cognitive relay networks with underlay spectrum sharing. IEEE Communications Letters, 15(7), 710–712.CrossRefGoogle Scholar
  15. 15.
    Zhang, X., Yan, Z., Gao, Y., & Wang, W. (2013). On the study of outage performance for cognitive relay networks (CRN) with the Nth best-relay selection in Rayleigh-fading channels. IEEE Wireless Communications Letters, 2(1), 110–113.CrossRefGoogle Scholar
  16. 16.
    Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bletsas, A., Khisti, A., Reed, D. P., & Lippman, A. (2006). Simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3), 659–672.CrossRefGoogle Scholar
  18. 18.
    Zhong, B., Zhang, Z., Zhang, X., Wang, J., & Long, K. (2013). Partial relay selection with fixed-gain relays and outdated CSI in underlay cognitive networks. IEEE Transactions on Vehicular Technology, 62(9), 4696–4701.CrossRefGoogle Scholar
  19. 19.
    Seyfi, M., Muhaidat, S., & Liang, J. (2013). Relay selection in cognitive radio networks with interference constraints. IET Communications, 7(10), 922–930.CrossRefGoogle Scholar
  20. 20.
    Minghua, X., & Aissa, S. (2012). Cooperative AF relaying in spectrum-sharing systems: Outage probability analysis under co-channel interferences and relay selection. IEEE Transactions on Communications, 60(11), 3252–3262.CrossRefGoogle Scholar
  21. 21.
    Kim, K. J., Duong, T. Q., & Tran, X. N. (2012). Performance analysis of cognitive spectrum-sharing single-carrier systems with relay selection. IEEE Transactions on Signal Processing, 60(12), 6435–6449.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Chamkhia, H., Hasna, M. O., Hamila, R., & Hussain, S. I. (2012). Performance analysis of relay selection schemes in underlay cognitive networks with decode and forward relaying. In Proceedings of IEEE PIMRC, Sydney, Australia, 9–12 Sep. 2012 (pp. 1552–1558).Google Scholar
  23. 23.
    Giang, N. H., Bao, V. N. Q., & Le, H. N. (2013). Cognitive underlaycommunications with imperfect CSI: network design and performanceanalysis. In Proceedings of IEEE ATC, HoChiMinh City, Vietnam, 15–17 Oct. 2013 (pp. 18–22).Google Scholar
  24. 24.
    Si, J., Huang, H., Li, Z., Hao, B., & Gao, R. (2014). Performance analysis of adaptive modulation in cognitive relay network with cooperative spectrum sensing. IEEE Transactions on Communications, 62(7), 2198–2211.CrossRefGoogle Scholar
  25. 25.
    Ho-Van, K., Sofotasios, P. C., Alexandropoulos, G. C., & Freear, S. (2015). Bit error rate of underlay decode-and-forward cognitive networks with best relay selection. IEEE/KICS Journal of Communications and Networks, 17(2), 162–171.CrossRefGoogle Scholar
  26. 26.
    Guimaraes, F. R. V., da Costa, D. B., Benjillali, M., Tsiftsis, T. A., & Karagiannidis, G. K. (2013). Best relay selection in cooperative spectrum sharing systems with multiple primary users. In Proceedings IEEE ICC, Budapest, Hungary, 9–13 Jun. 2013 (pp. 2661–2665).Google Scholar
  27. 27.
    Asaduzzaman, Kong, H. Y., & Lyum, K. (2010). Cooperative relaying in interference limited cognitive radio networks. In Proceedings of IEEE WiMob, Niagara Falls, Canada, 11–13 Oct. 2010 (pp. 280–285).Google Scholar
  28. 28.
    Zhong, B., Zhang, Z., Chai, X., Pan, Z., Long, K., & Cao, H. (2015). Performance analysis for opportunistic full-duplex relay selection in underlay cognitive networks. IEEE Transactions on Vehicular Technology, 64(10), 4905–4910.CrossRefGoogle Scholar
  29. 29.
    Zhang, Y., Xie, Y., Liu, Y., Feng, Z., Zhang, P., & Wei, Z. (2012). Outage probability of cognitive relay network with transmit power and interference constraints. In Proceedings of WPMC, Taipei, Taiwan, 24–27 Sep. 2012 (pp. 1–5).Google Scholar
  30. 30.
    Chang, C. W., Lin, P. H., & Su, S. L. (2011). A low-interference relay selection for decode-and-forward cooperative network in underlay cognitive radio. In Proceedings of IEEE CROWNCOM, Osaka, Japan, 1–3 Jun. 2011 (pp. 306–310).Google Scholar
  31. 31.
    Sakran, H., Shokair, M., Nasr, O., El-Rabaie, S., & El-Azm, A. A. (2012). Proposed relay selection scheme for physical layer security in cognitive radio networks. IET Communications, 6(16), 2676–2687.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Liu, Y., Wang, L., Duy, T. T., Elkashlan, M., & Duong, T. Q. (2015). Relay selection for security enhancement in cognitive relay networks. IEEE Wireless Communications Letters, 4(1), 46–49.CrossRefGoogle Scholar
  33. 33.
    Khuong, H. V. (2013). Exact outage analysis of underlay cooperative cognitive networks with maximum transmit-and-interference power constraints and erroneous channel information. Transactions on Emerging Telecommunications Technologies, 24(7–8), 1–17.Google Scholar
  34. 34.
    Khuong, H. V., & Sofotasios, P. C. (2013). Exact bit-error-rate analysis of underlay decode-and-forward multi-hop cognitive networks with estimation errors. IET Communications, 7(18), 2122–2132.CrossRefGoogle Scholar
  35. 35.
    Khuong, H. V. (2014). Impact of imperfect channel information on the performance of underlay cognitive DF multi-hop systems. Wireless Personal Communications, 74(2), 487–498.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Bao, V. N. Q., Duong, T. Q., & Chintha, T. (2013). On the performance of cognitive underlay multihop networks with imperfect channel state information. IEEE Transactions on Communications, 61(12), 4864–4873.CrossRefGoogle Scholar
  37. 37.
    Zhong, B., Zhang, X., Li, Y., Zhang, Z., & Long, K. (2013). Impact of partial relay selection on the capacity of communications systems with outdated CSI and adaptive transmission techniques. In Proceedings of IEEE WCNC, Shanghai, China, 7–10 Apr. 2013 (pp. 3720–3725).Google Scholar
  38. 38.
    Chen, J., Si, J., Li, Z., & Huang, H. (2012). On the performance of spectrum sharing cognitive relay networks with imperfect CSI. IEEE Communications Letters, 16, 1002–1005.CrossRefGoogle Scholar
  39. 39.
    Suraweera, H. A., Smith, P. J., & Shafi, M. (2010). Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Transactions on Vehicular Technology, 59, 1811–1822.CrossRefGoogle Scholar
  40. 40.
    Chamkhia, H., Omri, A., & Bouallegue, R. (2014). The impact of imperfect channel state information on the performances of relay selection schemes in underlay cognitive networks. In Proceedings of IWCMC, Nicosia, Cuprus, 4–8 Aug. 2014 (pp. 174–179).Google Scholar
  41. 41.
    Sun, H., & Pour, M. N. (2014). Decode-and-forward relay selection with imperfect CSI in cognitive relay networks. In Proceedings of IEEE MILCOM, Baltimore, MD, USA, 6–8 Oct. 2014 (pp. 416–421).Google Scholar
  42. 42.
    Ding, H., Ge, J., da Costa, D. B., & Jiang, Z. (2011). Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario. IEEE Transactions on Vehicular Technology, 60, 457–472.CrossRefGoogle Scholar
  43. 43.
    Zhang, X., Xing, J., Yan, Z., Gao, Y., & Wang, W. (2013). Outage performance study of cognitive relay networks with imperfect channel knowledge. IEEE Communications Letters, 17(1), 27–30.CrossRefGoogle Scholar
  44. 44.
    Tourki, K., Qaraqe, K. A., & Abdallah, M. (2014). Outage analysis of incremental opportunistic regenerative relaying with outdated CSI under spectrum sharing constraints. In Proceedings of IEEE WCNC, Istanbul, Turkey, 6–9 Apr. 2014 (pp. 851–856).Google Scholar
  45. 45.
    Thanh, T. L., Bao, V. N. Q., & An, B. (2013). On the performance of outage probability in underlay cognitive radio with imperfect CSI. In Proceedings of IEEE ATC, HoChiMinh City, Vietnam, 15–17 Oct. 2013 (pp. 125–130).Google Scholar
  46. 46.
    Wu, Q., Zhang, Z., & Wang, J. (2013). Outage analysis of cognitive relay networks with relay selection under imperfect CSI environment. IEEE Communications Letters, 17(7), 1297–1300.CrossRefGoogle Scholar
  47. 47.
    Tang, X., Cai, Y., Yang, W., Yang, W., Zhang, T., & Chen, H. (2016). Outage analysis of buffer-aided underlay cognitive relay networks with outdated CSI. International Journal of Electronics and Communications, 70(3), 359–366.CrossRefGoogle Scholar
  48. 48.
    Ahn, K. S., & Heath, R. W. (2009). Performance analysis of maximum ratio combining with imperfect channel estimation in the presence of cochannel interferences. IEEE Transactions on Wireless Communications, 8(3), 1080 1085.CrossRefGoogle Scholar
  49. 49.
    Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of Integrals, Series and Products (6th ed.). San Diego, CA: Academic.zbMATHGoogle Scholar
  50. 50.
    Bithas, P. S., & Rontogiannis, A. A. (2015). Outage probability analysis of multihop cognitive networks under multiple primary users interference. In Proceedings of European Wireless Conference, Budapest, Hungary, 20-22 May 2015 (pp. 1–5).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Telecommunications Engineering DepartmentHoChiMinh City University of TechnologyHoChiMinh CityVietnam

Personalised recommendations