Wireless Personal Communications

, Volume 92, Issue 3, pp 941–968 | Cite as

Power Optimization of Three Dimensional Turbo Code Using a Novel Modified Symbiotic Organism Search (MSOS) Algorithm



In modern communication system error-control coding scheme is used to elevate the immunity of noisy communication channel. Turbo code (TC) is considered as one of the significant channel coding schemes which approaches to the Shannon limit. An upgraded version of TC named as 3 dimensional turbo code (3D-TC) has been emerged as a challenging research area in recent past. Meanwhile, considerable improvement in bit error rate (BER) performance of the TC has been achieved by incorporating suitable optimization algorithms. Motivated by above research trends, a modified symbiotic organisms search (MSOS) algorithm has been proposed by changing the organism structure and selection criteria of a newly developed symbiotic organisms search (SOS) algorithm. Subsequently the proposed MSOS has been used to design an improved 3D-TC. Here an optimal power allocation scheme of a new class of 3 dimensional turbo encoder has been investigated to improve its BER characteristics mainly in high SNR regions. Furthermore, the BER performance of the proposed 3D-TC code has been compared with conventional 2D serially concatenated and parallel concatenated turbo code as well as conventional 3D-TC. Finally, the BER performance of the proposed MSOS optimized 3D-TC has been compared with the SOS optimized 3D-TC and harmony search optimized 3D-TC.


BER Generator polynomial Harmony search Interleaver Symbiotic organisms search 3 Dimensional turbo code 

Mathematics Subject Classification

94A24 94B60 


  1. 1.
    Berrou, C., Glavieux, A., & Thitimajshima, P. (1993). Near Shannon limit error correcting coding and decoding: Turbo codes. In Proceeding of IEEE international conference on communications (ICC’93), Geneva (Vol. 2, pp. 1064–1070). doi:10.1109/ICC.1993.397441.
  2. 2.
    Benedetto, S., & Montorsi, G. (1996). Design of parallel concatenated convolutional codes. IEEE Transactions on Communications, 44(5), 591–600. doi:10.1109/26.494303.CrossRefMATHGoogle Scholar
  3. 3.
    Benedetto, S., & Montorsi, G. (1996). Serial concatenation of interleaved codes: analytical performance bounds. In Proceeding of IEEE global telecommunications conference, (GLOBECOM’96) (Vol 1, pp. 106–110). doi:10.1109/GLOCOM.1996.594342.
  4. 4.
    Perez, L. C., Seghers, J., & Costello, D. J. (1996). A distance spectrum interpretation of turbo codes. IEEE Transactions on Information Theory, 42(6), 1698–1709. doi:10.1109/18.556666.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hokfelt, J., & Maseng, T. (1996). Optimizing the energy of different bit streams of turbo codes. In Turbo coding seminar proceedings, Lund, Sweden (pp. 59–63).Google Scholar
  6. 6.
    Duman, T. M., & Salehi, M. (1997). On optimal power allocation for turbo codes. In Proceeding of IEEE international symposium on information theory, Ulm., Germany (p. 104). doi:10.1109/ISIT.1997.613019.
  7. 7.
    Takeshita, O. Y., Collins, O. M., Massey, P. C., & Costello, D. J. (1999). A note on asymmetric turbo-codes. IEEE Communication Letter, 3(3), 69–71. doi:10.1109/4234.752905.CrossRefGoogle Scholar
  8. 8.
    Salah, M. M., Raines, R. A., Temple, M. A., & Bailey, T. G. (2000). Energy allocation strategies for turbo codes with short frames. In Proceedings of IEEE information technology: coding and computing (pp. 408–11). doi:10.1109/ITCC.2000.844262.
  9. 9.
    Ahuja, S. S., & Sharma, V. (2002). Optimal power control for convolutional and turbo codes over fading channels. In Proceedings of IEEE global telecommunications conference, (GLOBECOM’02) (Vol. 2, pp. 1249–1253). doi:10.1109/GLOCOM.2002.1188397.
  10. 10.
    Rangarajan, A., Singh, S. K., & Sharma, V. (2003). Power allocation policies for convolutional and turbo coded systems over fading channels. In Proceedings of conference on convergent technologies for the Asia-Pacific Region (Vol. 1, pp. 155–159). doi:10.1109/TENCON.2003.1273302.
  11. 11.
    Ramasamy, K., Balamuralithara, B., & Siddiqi, M. U. (2009). Optimal power allocation for the proposed asymmetric turbo code for 3G systems. International Journal of Electronics and Communication (AEÜ), 63(7), 551–561. doi:10.1016/j.aeue.2008.04.003.CrossRefGoogle Scholar
  12. 12.
    Li, J., Narayanan, K. R., & Georghiades, C. N. (2004). Product accumulate codes: A class of codes with near-capacity performance and low decoding complexity. IEEE Transactions on Information Theory, 50(1), 31–46. doi:10.1109/TIT.2003.821995.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gonzalez, H., Berrou, C., & Kerouédan, S. (2004). Serial/parallel (s/p) turbo codes for low error rates. In Proceedings of IEEE international conference on communication (ICC’04), Paris, France (Vol. 1, pp. 346–350). doi:10.1109/ICC.2004.1312508.
  14. 14.
    Berrou, C., i Amat, A. G., Ould-Cheikh-Mouhamedou, Y., Douillard, C., & Saouter, Y. (2007). Adding a rate-1 third dimension to turbo codes. In Proceedings of IEEE information theory workshop (ITW’07), Lake Taho, CA (pp. 156–161). doi:10.1109/ITW.2007.4313066.
  15. 15.
    Rosnes, E. (2008). Minimum distance upper bounds for 3-dimensional turbo codes using quadratic permutation polynomial interleavers. In Proceedings of IEEE 5th international symposium on turbo codes and related topics (pp. 420–425). doi:10.1109/TURBOCODING.2008.4658736.
  16. 16.
    Ismail, D. K. B., Douillard, C., & Kerouédan, S. (2009). Improving 3-dimensional turbo codes using 3GPP2 interleavers. In Proceedings of IEEE 1st international conference on communications and networking (pp. 1–7). doi:10.1109/COMNET.2009.5373557.
  17. 17.
    Berrou, C., i Amat, A. G., Ould-Cheikh-Mouhamedou, Y., & Saouter, Y. (2009). Improving the distance properties of turbo codes using a third component code: 3D turbo codes. IEEE Transactions on Communication, 57(9), 2505–2509. doi:10.1109/TCOMM.2009.09.070521.CrossRefGoogle Scholar
  18. 18.
    i Amat, A. G., & Rosnes, E. (2010). Analysis of 3-dimensional turbo code ensembles. In Proceedings of IEEE information theory workshop (ITW 2010), Cairo, (pp. 1–5). doi:10.1109/ITWKSPS.2010.5503177.
  19. 19.
    Feldman, J. (2003). Decoding error-correcting codes via linear programming. Ph.D. dissertation, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA.Google Scholar
  20. 20.
    Rosnes, E., Helmling, M., & i Amat, A. G. (2011). Pseudo code words of linear programming decoding of 3-dimensional turbo codes. In Proceedings of IEEE international symposium on information theory (ISIT), (pp. 1643–1647). doi:10.1109/ISIT.2011.6033823.
  21. 21.
    Kbaier, D., Douillard, C., & Kerouedan, S. (2012). Analysis of three-dimensional turbo codes. Annales des Telecommunications, 67(5–6), 257–268.CrossRefGoogle Scholar
  22. 22.
    Rosnes, E., Helmling, M., & i Amat, A. G. (2014). Minimum pseudoweight analysis of 3-dimensional turbo codes. IEEE Transactions on Communications, 62(7), 2170–2182. doi:10.1109/TCOMM.2014.2329690.CrossRefGoogle Scholar
  23. 23.
    Snášel, V., Platoš, J., Krömer, P., & Ouddane, V. (2008). Genetic algorithms searching for turbo code interleaver, and solving linear ordering problem. In Proceedings of IEEE 7th computer information systems and industrial management applications (CISIM’08), (pp. 71–77). doi:10.1109/CISIM.2008.32.
  24. 24.
    Snasel, V., Platos, J., Kromer, P., Ouddane, N., & Abraham, A. (2010). Interleaver optimization by population based metaheuristics. In Proceedings of IEEE 2nd world congress on nature and biologically inspired computing (NaBIC) (pp. 672–677). doi:10.1109/NABIC.2010.5716363.
  25. 25.
    Banerjee, S., & Chattopadhyay, S. (2014). Design of parallel concatenated convolution turbo code using harmony search algorithm. In Proceedings of IEEE international conference on power, control and embedded systems (ICPCES) (pp. 1–6). doi:10.1109/ICPCES.2014.7062810.
  26. 26.
    Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60–68.CrossRefGoogle Scholar
  27. 27.
    Banerjee, S., & Chattopadhyay, S. (2014). A novel asymmetric turbo code using cuckoo search algorithm. In Proceedings of IEEE India conference (INDICON) (pp. 1–6). doi:10.1109/INDICON.2014.7030640.
  28. 28.
    Yang, X.-S., & Deb, S. (2009). Cuckoo search via levy flights. In Proceedings of IEEE world congress on nature & biologically inspired computing (NaBIC 2009), USA (pp. 210–214) doi:10.1109/NABIC.2009.5393690.
  29. 29.
    Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic organisms search: A new meta-heuristic optimization algorithm. Computers and Structures, 139(15), 98–112. doi:10.1016/j.compstruc.2014.03.007.CrossRefGoogle Scholar
  30. 30.
    Andersen, J. D. (1999). Selection of component codes for turbo coding based on convergence properties. Annals of Telecommunications, 54(3), 208–213.Google Scholar
  31. 31.
    Benedetto, S., & Montorsi, G. (1996). Unveiling turbo codes: Some results on parallel concatenated coding schemes. IEEE Transactions on Information Theory, 42(2), 409–429. doi:10.1109/18.485713.CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringFuture Institute of Engineering and ManagementKolkataIndia
  2. 2.Department of Electronics and Telecommunication EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations