Advertisement

Wireless Personal Communications

, Volume 92, Issue 3, pp 863–881 | Cite as

PRIN: A Priority-Based Energy Efficient MAC Protocol for Wireless Sensor Networks Varying the Sample Inter-Arrival Time

  • Ananda Kumar Subramanian
  • Ilango Paramasivam
Article

Abstract

Wireless sensor networks (WSNs) are used in a variety of applications to sense and transfer information to the centralized node with energy efficiency increasing the network’s lifespan. Other factors, such as quality of service (QoS) is also important to improve the performance of the WSNs, by increasing throughput and reducing end-to-end delay. In this paper, we evaluate the importance of QoS in the Medium Access Control (MAC) protocol for WSNs using different metrics and parameters such as energy efficiency, throughput, delay, and the network lifespan. We propose a new QoS MAC protocol, “PRIority in Node” (PRIN), using static priority in the source and the intermediate node and priority among the node which is one hop from the sink node to achieve QoS in WSNs. Simulation results are compared with those of the synchronous MAC protocol in terms of QoS parameters to show the improved performance of the proposed MAC protocol.

Keywords

Wireless sensor network Medium access control Quality of service Priority queue CSMA based static priority 

References

  1. 1.
    Milenkovic, A., Otto, C., & Jovanov, E. (2006). Wireless sensor networks for personal health monitoring: issues and an implementation. Computer Communications, 29(13–14), 2521–2533. doi: 10.1016/j.comcom.2006.02.011. (Wireless Sensor Networks and Wired/Wireless Internet Communications).CrossRefGoogle Scholar
  2. 2.
    Martínez, J.-F., Garcí, A.-B., Corredor, I., López, L., Hernández, V., & Dasilva, A. (2007). QoS in wireless sensor networks: Survey and approach. In Proceedings of the 2007 Euro American conference on Telematics and information systems (p. 20).Google Scholar
  3. 3.
    Yigitel, M. A., Incel, O. D., & Ersoy, C. (2011). QoS-aware MAC protocols for wireless sensor networks : A survey. Computer Networks, 55(8), 1982–2004.CrossRefGoogle Scholar
  4. 4.
    Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings (Vol. 3, pp. 1567–1576). IEEE.Google Scholar
  5. 5.
    Van Dam, T., & Langendoen, K. (2003). An adaptive energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (pp. 171–180). Los Angeles, USA.Google Scholar
  6. 6.
    El-Hoiydi, A., & Decotignie, J.-D. (2004). WiseMAC: An Ultra-low power MAC protocol for multi-hop wireless sensor networks. In Proceedings of the International Workshop on Algorithmic Aspects of Wireless Sensor Networks (Algosen-sors) (pp. 18–31).Google Scholar
  7. 7.
    Bacco, G.D., Melodia, T., & Cuomo, F. (2004). A MAC protocol for delay bounded applications in wireless sensor networks. In Proceedings on Med- Hoc-Net (pp. 208–220).Google Scholar
  8. 8.
    Liu, Y., Elhanany, I., & Qi, H. (2005). An energy-efficient QoS-aware media access control protocol for wireless sensor networks. In Proceedings of IEEE International Conference on Mobile Ad-hoc and Sensor Systems Conference (pp. 9–11). Washington, DC, USA.Google Scholar
  9. 9.
    Jamieson, K., Balakrishnan, H., & Tay, Y. (2006). SIFT: A MAC protocol for event-driven wireless sensor networks. In Third European Workshop on Wireless Sensor Networks (EWSN 2006) (Vol. 3868, pp. 260–275). Zurich, Switzerland.Google Scholar
  10. 10.
    Baroudi, U. (2007). EQoSa: Energy and QoS aware MAC for wireless sensor networks. In Signal Processing and Its Applications, 2007. ISSPA 2007. 9th International Symposium on (pp. 1–4).Google Scholar
  11. 11.
    Suriyachai, P., Roedig, U., & Scott, A. (2009). Implementation of a MAC protocol for QoS support in wireless sensor networks. In Pervasive Computing and Communications, 2009. PerCom 2009. IEEE International Conference on (pp. 1–6).Google Scholar
  12. 12.
    Kim, H., & Min, S.-G. (2009). Priority-based QoS MAC protocol for wireless sensor networks. In IPDPS’09: Proceedings of the 2009 IEEE International Symposium on Parallel& Distributed Processing (pp. 1–8). Washington, DC: IEEE Computer Society.Google Scholar
  13. 13.
    Ben-Othman, J., Mokdad, L., & Yahya, B. (2011). An energy efficient priority-based QoS MAC protocol for wireless sensor networks. In Communications (ICC), 2011 IEEE International Conference on (pp. 1–6).Google Scholar
  14. 14.
    Zarei, Z., Safavi, S. M., & Abbasi, A. (2012). A MAC protocol for provisioning QoS and energy-efficiency in WSNs. International Journal of Computer Theory and Engineering, 4(4), 489–493.CrossRefGoogle Scholar
  15. 15.
    Arifuzzaman, M., Matsumoto, M., & Sato, T. (2013). An intelligent hybrid MAC with traffic-differentiation-based QoS for wireless sensor networks. IEEE Sensors Journal, 13(6), 2391–2399.CrossRefGoogle Scholar
  16. 16.
    Koubaa, A., Severino, R., Alves, M., & Tovar, E. (2009). Improving quality-of-service in wireless sensor networks by mitigating hidden-node collisions. IEEE Transactions on Industrial Informatics, 5(3), 299–313.CrossRefGoogle Scholar
  17. 17.
    Ruiz, J., Gallardo, J. R., Villasenor-Gonzalez, L., Makrakis, D., & Mouftah, H. T. (2009). QUATTRO: QoS-capable cross-layer MAC protocol for wireless sensor networks. In Global Telecommunications Conference, 2009. GLOBECOM 2009. (pp. 1–6). IEEE.Google Scholar
  18. 18.
    Lagkas, T. D., Angelidis, P., Stratogiannis, D. G., & Tsiropoulos, G. I. (2010) Analysis of queue load effect on channel access prioritization in wireless sensor networks. In Distributed Computing in Sensor Systems Workshops (DCOSSW), 2010 6th IEEE International Conference on (pp. 1–6).Google Scholar
  19. 19.
    Zhaohua, L., & Meijun, S. (2010). Research on quality of service in wireless sensor networks. In Information Engineering and Computer Science (ICIECS), 2010 2nd International Conference on (pp. 1–4).Google Scholar
  20. 20.
    Khiati, M., & Djenouri, D. (2012) Cluster-based fast broadcast in duty-cycled wireless sensor networks. In Network Computing and Applications (NCA), 2012 11th IEEE International Symposium on (pp. 249–252).Google Scholar
  21. 21.
    Lu, J., Van Den Bossche, A., & Campo, E. (2012) Improving robustness and flexibility of MAC layer for guaranteed QoS indoor monitoring in wireless mesh sensor networks. In Wireless Communications in Unusual and Confined Areas (ICWCUCA), 2012 International Conference on (pp. 1–6).Google Scholar
  22. 22.
    Touil, H., Fakhri, Y., & Benattou, M. (2012). Energy-efficient MAC protocol based on IEEE 802.11e for wireless multimedia sensor networks. In Multimedia Computing and Systems (ICMCS), 2012 International Conference on (pp. 53–58).Google Scholar
  23. 23.
    Wang, Y., Vuran, M. C., & Goddard, S. (2012). Cross-layer analysis of the end-to-end delay distribution in wireless sensor networks. IEEE/ACM Transactions on Networking, 20(1), 305–318.CrossRefGoogle Scholar
  24. 24.
    Liu, Z., & Elhanany, I. (2006). RL-MAC: A QoS-aware reinforcement learning based MAC protocol for wireless sensor networks. In Networking, Sensing and Control, 2006. ICNSC’06. Proceedings of the 2006 IEEE International Conference on (pp. 768–773).Google Scholar
  25. 25.
    Zhao, J., Qiao, C., Sudhaakar, R. S., & Yoon, S. (2013). Improve efficiency and reliability in single-hop WSNs with transmit-only nodes. IEEE Transactions on Parallel and Distributed Systems, 24(3), 520–534.CrossRefGoogle Scholar
  26. 26.
    Merlin, C. J., & Heinzelman, W. B. (2010). Duty cycle control for low-power-listening MAC protocols. IEEE Transactions on Mobile Computing, 9(11), 1508–1521.CrossRefGoogle Scholar
  27. 27.
    Marinkovic, S. J., Popovici, E. M., Spagnol, C., Faul, S., & Marnane, W. P. (2009). Energy-efficient low duty cycle MAC protocol for wireless body area networks. IEEE Transactions on Information Technology in Biomedicine, 13(6), 915–925.CrossRefGoogle Scholar
  28. 28.
    Anjum, I., Alam, N., Razzaque, A., Hassan, M. M., & Alamri, A. (2013). Traffic priority and load adaptive MAC protocol for QoS provisioning in body sensor networks. International Journal of Distributed Sensor Networks, 1(2), 1–6.Google Scholar
  29. 29.
    Chen, P., & Zhu, Y. (2010). An M/G/1 retrial queue with priority, balking and feedback customers. Journal of Convergence Information Technology, 5(2), 159–162.Google Scholar
  30. 30.
    Wu, J., & Lian, Z. (2013). A single-server retrial G-queue with priority and unreliable server under Bernoulli vacation schedule. Computers and Industrial Engineering, 64, 84–93.CrossRefGoogle Scholar
  31. 31.
    Fotue, D., Melakessou, F., Labiod, H., & Engel, T. (2011). Effect of sink location on aggregation based on degree of connectivity for wireless sensor networks. In 2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (pp. 271–276). doi: 10.1109/IMIS.2011.46.
  32. 32.
  33. 33.
  34. 34.
    Lenin, R. B., & Ramaswamy, S. (2013). Performance analysis of wireless sensor networks using queuing networks. Annals of Operations Research, 233(1), 1–25.MathSciNetzbMATHGoogle Scholar
  35. 35.
    Nguyen, K., & Ji, Y. (2012). Asynchronous MAC protocol with QoS awareness in wireless sensor networks. In GLOBECOM—IEEE Glob. Telecommun. Conf. (pp. 555–559).Google Scholar
  36. 36.
    Fafoutis, X., Di Mauro, A., Vithanage, M. D., & Dragoni, N. (2015). Receiver-initiated medium access control protocols for wireless sensor networks. Computer Networks, 76, 55–74.CrossRefGoogle Scholar
  37. 37.
    Jang, B., Lim, J. B., & Sichitiu, M. L. (2013). An asynchronous scheduled MAC protocol for wireless sensor networks. Computer Networks, 57(1), 85–98.CrossRefGoogle Scholar
  38. 38.
    Naderi, M. Y., Nintanavongsa, P., & Chowdhury, K. R. (2014). RF-MAC: A medium access control protocol for re-chargeable sensor networks powered by wireless energy harvesting. IEEE Transactions on Wireless Communications, 13(99), 3926–3937.CrossRefGoogle Scholar
  39. 39.
    Doudou, M., Djenouri, D., Badache, N., & Bouabdallah, A. (2014). Synchronous contention-based MAC protocols for delay-sensitive wireless sensor networks: A review and taxonomy. Journal of Network and Computer Applications, 38, 172–184.CrossRefGoogle Scholar
  40. 40.
    Ozen, Y., Bayilmis, C., Bandirmali, N., & Erturk, I. (2014). Two tiered service differentiation and data rate adjustment scheme for WMSNs cross layer MAC. In Proceedings of 11th International Conference on Electronics, Computer and Computation (pp. 1–4). Abuja, Nigeria.Google Scholar
  41. 41.
    Andreou, P. G., Zeinalipour-Yazti, D., Samaras, G. S., & Chrysanthis, P. K. (2014). A network-aware framework for energy-efficient data acquisition in wireless sensor networks. Journal of Network and Computer Applications, 46, 227–240.CrossRefGoogle Scholar
  42. 42.
    Correia, L. H., Tran, T. D., Pereira, V. N. S. S., Giacomin, J. C., & Sá Silva, J. M. (2015). DynMAC: A resistant MAC protocol to coexistence in wireless sensor networks. Computer Networks, 76(1), 1–16.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Computing Science and EngineeringVIT UniversityVelloreIndia

Personalised recommendations