Wireless Personal Communications

, Volume 92, Issue 2, pp 771–783 | Cite as

SC-LDPC Code Design for Half-Duplex Relay Channels

  • Md. Noor-A-Rahim
  • Khoa D. Nguyen
  • Gottfried Lechner
Article

Abstract

This paper studies code design for the half-duplex relay channel when the transmissions take place over binary input additive white Gaussian noise (BIAWGN) channels. Using the decode-forward relay protocol, we design the relay code based on a spatially coupled low-density parity-check (SC-LDPC) code. We show a low complexity density evolution analysis for the proposed relay code. From the density evolution results, we observe that the proposed spatially coupled relay code achieves a capacity approaching performance. We also observe that the proposed code outperforms existing optimized LDPC relay codes. Through simulation results, we evaluate the finite-length performance of the proposed code.

Keywords

Spatially coupled codes Decode-and-forward relaying BIAWGN channel 

References

  1. 1.
    Meulen, E. C. V. D. (1971). Three-terminal communication channels. Advances in Applied Probability, Vol. 3, no. 1, pp. 120–154, [Online]. http://www.jstor.org/stable/1426331.
  2. 2.
    Cover, T., & Gamal, A. (1979). Capacity theorems for the relay channel. IEEE Transaction on Information Theory, 25(5), 572–584.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Razaghi, P., & Yu, W. (2007). Bilayer low-density parity-check codes for decode-and-forward in relay channels. IEEE Transaction on Information Theory, 53(10), 3723–3739.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Azmi, M., Yuan, J., Lechner, G., & Rasmussen, L. (2011). Design of multi-edge-type bilayer-expurgated LDPC codes for decode-and-forward in relay channels. IEEE Transaction on Communications, 59(11), 2993–3006.CrossRefGoogle Scholar
  5. 5.
    Ha, J., Kim, J., & McLaughlin, S. (2004). Rate-compatible puncturing of low-density parity-check codes. IEEE Transaction on Information Theory, 50(11), 2824–2836.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Hu, J., & Duman, T. (2007). Low density parity check codes over wireless relay channels. IEEE Transaction on Wireless Communication, 6(9), 3384–3394.CrossRefGoogle Scholar
  7. 7.
    Chakrabarti, A., de Baynast, A., Sabharwal, A., & Aazhang, B. (2007). Low density parity check codes for the relay channel. IEEE Journal on Selected Areas in Communication, 25(2), 280–291.CrossRefGoogle Scholar
  8. 8.
    Li, C., Yue, G., Wang, X., & Khojastepour, M. (2008). LDPC code design for half-duplex cooperative relay. IEEE Transaction on Wireless Communication, 7(11), 4558–4567.CrossRefGoogle Scholar
  9. 9.
    Kudekar, S., Measson, C., Richardson, T., & Urbankez, R. (2010). Threshold saturation on BMS channels via spatial coupling. In Proceedings of International Symposium on Turbo Codes and Iterative Inform. Processing (ISTC), pp. 309–313.Google Scholar
  10. 10.
    Si, Z., Thobaben, R., & Skoglund, M. (2013). Bilayer LDPC convolutional codes for decode-and-forward relaying. IEEE Transaction on Communications, 61(8), 3086–3099.CrossRefGoogle Scholar
  11. 11.
    Uchikawa, H., Kasai, K., & Sakaniwa, K. (2011). Spatially coupled LDPC codes for decode-and-forward in erasure relay channel. In Proceedings of IEEE International Symposium on Information Theory (ISIT), pp. 1474–1478.Google Scholar
  12. 12.
    Wei, L., Costello, D., & Fuja, T. (2013). Coded cooperation using rate-compatible spatially-coupled codes. In Proceedings of IEEE International Symposium on Information Theory (ISIT), pp. 1869–1873.Google Scholar
  13. 13.
    Chakrabarti, A., Sabharwal, A., & Aazhang, B. (2005). Sensitivity of achievable rates for half-duplex relay channel. In Proceedings Workshop on Signal Processing Advances in Wireless Comm., pp. 970–974.Google Scholar
  14. 14.
    Johnson, S. J. (2010). Iterative error correction: Turbo, low-density parity-check and repeat-accumulate codes. Cambridge: Cambridge University Press.MATHGoogle Scholar
  15. 15.
    Felstrom, A., & Zigangirov, K. (1999). Time-varying periodic convolutional codes with low-density parity-check matrix. IEEE Transaction on Information Theory, 45(6), 2181–2191.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kudekar, S., Richardson, T., & Urbanke, R. (2011). Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC. IEEE Transaction on Information Theory, 57(2), 803–834.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Si, Z., Thobaben, R., & Skoglund, M. (2012). Rate-compatible LDPC convolutional codes achieving the capacity of the BEC. IEEE Transaction on Information Theory, 58(6), 4021–4029.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Noor-A-Rahim, M., Lechner, G., & Nguyen, K. D. (2016). Density evolution analysis of spatially coupled LDPC codes over BIAWGN channel. In Proceedings of Australian communication theory workshop (AusCTW).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Md. Noor-A-Rahim
    • 1
  • Khoa D. Nguyen
    • 2
  • Gottfried Lechner
    • 2
  1. 1.Centre for Infocomm Technology (INFINITUS)Nanyang Technological UniversityNanyang AvenueSingapore
  2. 2.Institute for Telecommunications ResearchUniversity of South AustraliaAdelaideAustralia

Personalised recommendations