Wireless Personal Communications

, Volume 92, Issue 2, pp 455–465 | Cite as

Path Loss Models for Low-Height Mobiles in Forest and Urban



This paper presents path loss measurements at 2.1 GHz in forest and urban areas. Empirical path loss models have been presented for low-height dual-mobility channels. Three test scenarios are considered for the transmitter (Tx) and receiver (Rx) placed inside the test vehicle or on a test cart pushed at walking speed. Based on measurements, the in-leaf and single-slope path loss models are presented. The path loss exponents for the dual-mobility channels are found to be between 2.1 and 3.4 in urban and 8.0 in forest, with higher reference when antennas are placed inside the vehicle.


Dual-mobility Vehicle-to-vehicle Vehicle-to-walk Dense scatter Path loss 


  1. 1.
    Sen, I., & Matolak, D. (2008). Vehicle-vehicle channel models for the 5-GHz band. IEEE Transactions on Intelligent Transportation Systems, 9(2), 235–245.CrossRefGoogle Scholar
  2. 2.
    Paier, A., Karedal, J., Czink, N., Dumard, C., Zemen, T., Tufvesson, F., et al. (2009). Characterization of vehicle-to-vehicle radio channels from measurements at 5.2 GHz. Wireless Personal Communications, 50(1), 19–32.CrossRefGoogle Scholar
  3. 3.
    Iwai, H., & Goto, S. (2011). Multipath delay profile models for ITS in 700 MHz band. In Proceedings of IEEE Vehicular Technology Conference (pp. 1–5). Kyoto, Japan.Google Scholar
  4. 4.
    Rappaport, T. S. (2001). Wireless communications: Principles and practice (2nd ed.). Upper Saddle River: Prentice Hall.MATHGoogle Scholar
  5. 5.
    Mecklenbrauker, C. F., Molisch, A. F., Karedal, J., Tufvesson, F., Paier, A., Bernado, L., et al. (2011). Vehicular channel characterization and its implications for wireless system design and performance. Proceedings of the IEEE, 99(7), 1189–1212.CrossRefGoogle Scholar
  6. 6.
    Karedal, J., Czink, N., Paier, A., Tufvesson, F., & Molisch, A. F. (2011). Path loss modeling for vehicle-to-vehicle communications. IEEE Transactions on Vehicular Technology, 60(1), 323–328.CrossRefGoogle Scholar
  7. 7.
    Hill, C., & Kneisel, T. (1991). Portable radio antenna performance in the 150, 450, 800, and 900 MHz bands outside and in-vehicle. IEEE Transactions on Vehicular Technology, 40(4), 750–756.CrossRefGoogle Scholar
  8. 8.
    Tanghe, E., Joseph, W., Verloock, L., & Martens, L. (2008). Evaluation of vehicle penetration loss at wireless communication frequencies. IEEE Transactions on Vehicular Technology, 57(4), 2036–2041.CrossRefGoogle Scholar
  9. 9.
    COST235. (1996). Radio propagation effects on next-generation fixed-service terrestrial telecommunication systems. Final Report: Luxembourg.Google Scholar
  10. 10.
    Weissberger, M. A. (1982). An initial critical summary of models for predicting the attenuation of radio waves by trees. Rep. ESD-TR-81-101, Electromagnetic Compatibility Analysis Center: Annapolis, MD.Google Scholar
  11. 11.
    CCIR. (1986). Influences of terrain irregularities and vegetation on troposphere propagation. CCIR Report. Geneva.Google Scholar
  12. 12.
    Al-Nuaimi, M. O., & Stephens, R. B. L. (1998). Measurements and prediction model optimization for signal attenuation in vegetation media at centimetre wave frequencies. IEE Proceedings - Microwaves, Antennas and Propagation, 145(3), 201–206.CrossRefGoogle Scholar
  13. 13.
    Meng, Y. S., Lee, Y. H., & Ng, B. C. (2009). Empirical near ground path loss modeling in a forest at VHF and UHF bands. IEEE Transactions on Antennas and Propagation, 57(5), 1461–1468.CrossRefGoogle Scholar
  14. 14.
    Akyildiz, I. F., Gutierrez-Estevez, D. M., & Reyes, E. C. (2010). The evolution to 4G cellular systems: LTE-Advanced. Physical Communication, 3, 217–244. (Elsevier).CrossRefGoogle Scholar
  15. 15.
    Wu, Q., Matolak, D. W., & Sen, I. (2010). 5-GHz-band vehicle-to-vehicle channels: Models for multiple values of channel bandwidth. IEEE Transactions on Vehicular Technology, 59(5), 2620–2625.CrossRefGoogle Scholar
  16. 16.
    Matolak, D. W., Yang, F. C., & Riley, H. B. (2012). Short range forest channel modeling in the 5 GHz band. In Proceedings of the IEEE European Conference on Antennas and Propagation (pp. 3337–3341). Athens, OH.Google Scholar
  17. 17.
    Molisch, A. F. (2010). Wireless communications (2nd ed.). Hoboken: Wiley.Google Scholar
  18. 18.
    Cheng, L., Henty, B. E., Stancil, D. D., Bai, F., & Mudalige, P. (2007). Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band. IEEE Journal on Selected Areas in Communications, 25(8), 1501–1516.CrossRefGoogle Scholar
  19. 19.
    Goldman, J., & Swenson, G. W. (1999). Radio wave propagation through woods. IEEE Antennas and Propagation Magazine, 41(5), 34–36.CrossRefGoogle Scholar
  20. 20.
    Meng, Y. S., Lee, Y. H., & Ng, B. C. (2008). Near ground channel characterization and modeling for a tropical forested path. In Proceedings of the URSI General Assembly. Chicago, IL.Google Scholar
  21. 21.
    Anderson, D. R., Sweeney, D. J., & Williams, T. A. (2011). Essentials of modern business statistics with microsoft excel (5th ed.). Boston: Cengage Learning.Google Scholar
  22. 22.
    Kostanic, I., Hall, C., & McCarthy, J. (1998). Measurements of the vehicle penetration loss characteristics at 800 MHz. In Proceedings of IEEE Vehicular Technology Conference (vol. 1. pp. 1–4). Ottawa, Ontario.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceWichita State UniversityWichitaUSA

Personalised recommendations