Wireless Personal Communications

, Volume 93, Issue 2, pp 523–541 | Cite as

Analysis and Improvement of a Privacy-Aware Handover Authentication Scheme for Wireless Network

  • Yong Xie
  • Libing Wu
  • Neeraj Kumar
  • Jian Shen


To enable mobile device seamlessly and securely handover to different access points, a secure and efficient handover authentication scheme is desperately required. However, it is an arduous issue to design a secure handover scheme for wireless network because mobile nodes are limited in power and computational capability, handover latency is severely restricted and wireless network is opening and insecure. To deal the issue, we propose an improved privacy-aware handover authentication scheme for wireless network. We give the security proof to demonstrate our proposed scheme can provide mutual authentication and secure key agreement, and can resist all kinds of known security attacks. Compared with up-to-date similar handover schemes, our proposed scheme not only meets the security requirements of handover scheme, but also decreases computation cost and communication cost. Therefore, our proposed scheme is more suitable for wireless network than the similar schemes.


Handover Authentication scheme ID-based authentication Anonymity 



This work is supported by National Natural Science Foundation of China (Nos. 61272112, 61472287, 61300237), Science and Technology Support Program of Hubei Province (No. 2013BAA004).


  1. 1.
    Islam, S. K., & Khan, M. K. (2014). Provably secure and pairing-free identity-based handover authentication protocol for wireless mobile networks. International Journal of Communication Systems. doi: 10.1002/dac.2847.
  2. 2.
    Fu, A., Lan, S., Huang, B., Zhu, Z., & Zhang, Y. (2012). A novel group-based handover authentication scheme with privacy preservation for mobile WiMAX networks. IEEE Communications Letters, 16(11), 1744–1747.CrossRefGoogle Scholar
  3. 3.
    Acquisti, A., Brandimarte, L., & Loewenstein, G. (2015). Privacy and human behavior in the age of information. Science, 347(6221), 509–514.CrossRefGoogle Scholar
  4. 4.
    Jing, Q., Zhang, Y., Fu, A., & Liu, X. (2011). A privacy preserving handover authentication scheme for EAP-based wireless networks. In Proceedings of IEEE GLOBECOM, 2011, pp. 1–6.Google Scholar
  5. 5.
    Hughes, D., & Shmatikov, V. (2004). Information hiding, anonymity and privacy: A modular approach. Journal of Computer security, 12(1), 3–36.CrossRefGoogle Scholar
  6. 6.
    He, D., Chen, C., Chan, S., & Bu, J. (2012). Analysis and improvement of a secure and efficient handover authentication for wireless networks. IEEE Communications Letters, 16(8), 1270–1273.CrossRefGoogle Scholar
  7. 7.
    Li, G., Jiang, Q., Wei, F., & Ma, C. (2015). A new privacy-aware handover authentication scheme for wireless networks. Wireless Personal Communications, 80(2), 581–589.CrossRefGoogle Scholar
  8. 8.
    Xenakis, C., & Merakos, L. (2010). Security in third generation mobile networks. Computer Communications, 27(7), 638–650.CrossRefGoogle Scholar
  9. 9.
    Chang, C. C., & Tsai, H. C. (2010). An anonymous and self-verified mobile authentication with authenticated key agreement for large-scale wireless networks. IEEE Transactions on Wireless Communications, 9(11), 3346–3353.MathSciNetCrossRefGoogle Scholar
  10. 10.
    He, D., Chan, S., & Guizani, M. (2015). Handover authentication for mobile networks: Security and efficiency aspects. IEEE Network, 29(3), 96–103.CrossRefGoogle Scholar
  11. 11.
    Yang, G., Huang, Q., Wong, D. S., & Deng, X. (2010). Universal authentication protocols for anonymous wireless communications. IEEE Transactions on Wireless Communications, 9(1), 168–174.CrossRefGoogle Scholar
  12. 12.
    He, D., Bu, J., Chan, S., Chen, C., & Yin, M. (2011). Privacy-preserving universal authentication protocol for wireless communications. IEEE Transactions on Wireless Communications, 10(2), 431–436.CrossRefGoogle Scholar
  13. 13.
    He, D., Bu, J., Chan, S. C., & Chen, C. (2013). Handauth: Efficient handover authentication with conditional privacy for wireless networks. IEEE Transactions on Computers, 62(3), 616–622.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Choi, J., & Jung, S. (2010). A handover authentication using credentials based on chameleon hashing. IEEE Communications Letters, 14(1), 54–56.CrossRefGoogle Scholar
  15. 15.
    Shen, A. N., Guo, S., Zeng, D., & Guizani, M. (2012). A lightweight privacy-preserving protocol using chameleon hashing for secure vehicular communications. In Proceeding of IEEE wireless communications and networking conference 2012 (WCNC 2012), pp. 2543–2548.Google Scholar
  16. 16.
    Yeo, S. L., Yap, W. S., Liu, J. K., & Henricksen, M. (2013). Comments on analysis and improvement of a secure and efficient handover authentication based on bilinear pairing functions. IEEE Communications Letters, 17(8), 1521–1523.CrossRefGoogle Scholar
  17. 17.
    Han, Q., Zhang, Y., Chen, X., Li, H., & Quan, J. (2012). Efficient and robust identity-based handoff authentication in wireless networks. In L. Xu, E. Bertino & Y. Mu (Eds.), Network and System Security: Proceedings of the 6th International Conference, NSS 2012, Wuyishan, Fujian, China, November 21–23, 2012 (pp. 180–191). Berlin, Heidelberg: Springer.Google Scholar
  18. 18.
    He, D., Chen, C., Bu, J., Chan, S. C., & Zhang, Y. (2013). Security and efficiency in roaming services for wireless networks: Challenges, approaches, and prospects. IEEE Communications Magazine, 51(2), 142–150.CrossRefGoogle Scholar
  19. 19.
    Tsai, J. L., Lo, N. W., & Wu, T. C. (2013). Secure handover authentication protocol based on bilinear pairings. Wireless Personal Communications, 73(3), 1037–1047.CrossRefGoogle Scholar
  20. 20.
    Wang, W., & Hu, L. (2014). A secure and efficient handover authentication protocol for wireless networks. Sensors, 14(7), 11379–11394.CrossRefGoogle Scholar
  21. 21.
    Cao, J., Ma, M., & Li, H. (2012). An uniform handover authentication between E-UTRAN and non-3GPP access networks. IEEE Transactions on Wireless Communications, 11(10), 3644–3650.CrossRefGoogle Scholar
  22. 22.
    Fu, Z., Sun, X., Liu, Q., Zhou, L., & Shu, J. (2015). Achieving efficient cloud search services: Multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Transactions on Communications, 98(1), 190–200.CrossRefGoogle Scholar
  23. 23.
    Xia, Z., Wang, X., Sun, X., & Wang, Q. (2015). A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Transactions on Parallel and Distributed Systems, 27(2), 340–352.CrossRefGoogle Scholar
  24. 24.
    Fu, Z., Ren, K., Shu, J., Sun, X., & Huang, F. (2015). Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Transactions on Parallel and Distributed Systems. doi: 10.1109/TPDS.2015.2506573.Google Scholar
  25. 25.
    Lee, C., Lai, Y., Chen, C., & Chen, L. (2013). A novel designated verifier signature scheme based on bilinear pairing. Information Technology and Control, 42(3), 247–252.CrossRefGoogle Scholar
  26. 26.
    Ren, Y., Shen, J., Wang, J., Han, J., & Lee, S. (2015). Mutual verifiable provable data auditing in public cloud storage. Journal of Internet Technology, 16(2), 317–323.Google Scholar
  27. 27.
    He, D., Huang, B., & Chen, J. (2013). New certificateless short signature scheme. IET Information Security, 7(2), 113–117.CrossRefGoogle Scholar
  28. 28.
    Guo, P., Wang, J., Li, B., & Lee, S. (2014). A variable threshold-value authentication architecture for wireless mesh networks. Journal of Internet Technology, 15(6), 929–936.Google Scholar
  29. 29.
    Shen, J., Tan, H., Wang, J., Wang, J., & Lee, S. (2015). A novel routing protocol providing good transmission reliability in underwater sensor networks. Journal of Internet Technology, 16(1), 171–178.Google Scholar
  30. 30.
    He, D., Zeadally, S., Kumar, N., & Lee, J.-H. (2016). One-to-many authentication for access control in mobile pay-tv systems. Science China Information Sciences. doi: 10.1007/s11432-015-5469-5.MathSciNetGoogle Scholar
  31. 31.
    He, D., Zeadally, S., Kumar, N., & Lee, J.-H. (2016). Anonymous authentication for wireless body area networks with provable security. IEEE Systems Journal. doi: 10.1109/JSYST.2016.2544805.Google Scholar
  32. 32.
    Bellare, M., & Rogaway, P. (1993). Random oracles are practical: A paradigm for designing efficient protocols. In Proceedings of the 1st ACM conference on computer and communications security, pp. 62–73.Google Scholar
  33. 33.
    Pointcheval, D., & Stern, J. (2000). Security arguments for digital signatures and blind signatures. Journal of Cryptology, 13(3), 361–396.CrossRefzbMATHGoogle Scholar
  34. 34.
    Pointcheval, D., & Stern, J. (1996). Security proofs for signature schemes. In Advances in cryptology EUROCRYPT’96 (pp. 387–398). Berlin, Heidelberg: Springer.Google Scholar
  35. 35.
    MIRACL library on

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yong Xie
    • 1
    • 2
  • Libing Wu
    • 1
    • 3
  • Neeraj Kumar
    • 4
  • Jian Shen
    • 5
  1. 1.School of Computer ScienceWuhan UniversityWuhanChina
  2. 2.School of Information and EngineeringJingdezhen Ceramic InstituteJingdezhenChina
  3. 3.State Key Laboratory of Software EngineeringWuhan UniversityWuhanChina
  4. 4.Department of Computer Science and EngineeringThapar UniversityPatialaIndia
  5. 5.School of Computer and SoftwareNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations