Advertisement

Wireless Personal Communications

, Volume 89, Issue 1, pp 1–13 | Cite as

Design of (4, 8) Binary Code with MDS and Zigzag-Decodable Property

  • Mingjun Dai
  • Zexin Lu
  • Dan Shen
  • Hui WangEmail author
  • Bin Chen
  • Xiaohui Lin
  • Shengli Zhang
  • Li Zhang
  • Hongwei Liu
Article

Abstract

Dedicated to network code structured distributed storage system, a novel (4, 8) storage code is designed. The code possesses the following properties: operation within binary field , maximum distance separable property, zigzag decodable, requiring symmetric storage overhead among multiple storage nodes, and requiring little storage overhead . In the design of such a storage code, we first let original packets shift to the right by several bits and then add them together within binary field in bitwise manner . We propose a smart design on a cyclic matrix that represents the number of bits shifted by those packet. Existing works do not hold these properties simultaneously , which have the drawback of high encoding and decoding complexity, large storage overhead, and complicated storage room allocation procedure, etc.

Keywords

MDS Distributed storage Network code Zigzag decoding Binary code 

Notes

Acknowledgments

This research was supported by research grant from Natural Science Foundation of China (61301182, 61171071, 61575126), Specialized Research Fund for the Doctoral Program of Higher Education from the Ministry of Education(20134408120004), Natural Science Foundation of Guangdong Province (S2013040016857, 2015A030313552), Yumiao Engineering from Education Department of Guangdong Province (2013LYM_0077), the Key Project of Department of Education of Guangdong Province (2015KTSCX121), Open Fund from The State Key Laboratory of Integrated Services Networks Xidian University (ISN15-06), Foundation of Shenzhen City (KQCX20140509172609163, GJHS20120621143440025, JCYJ20140418095735590, JCYJ201503-24140036847, ZDSY20120612094614154), Natural Science Foundation of SZU (00002501, 00036107).

References

  1. 1.
    Fukayama, A., Iwamoto, H., Motegi, M., Sato, H., Takenaka, H., Tsuchikawa, M., et al. (2013). Designing carrier’s online storage family cloud for enhancing telecom home services. In Proceedings of the IEEE 17th international conference intelligence in next generation networks (ICIN) (pp. 75–85). Venice, Italy.Google Scholar
  2. 2.
    Dimakis, A. G., Godfrey, P. B., Wu, Y., Wainwright, M. J., & Ramchandran, K. (2010). Network coding for distributed storage systems. IEEE Transactions on Information Theory, 56(9), 4539–4551.CrossRefGoogle Scholar
  3. 3.
    Ghemawat, S., Gobioff, H., Leung, S.T. (2003). The Google file system. In SOSP ’03 Proceedings of the nineteenth ACM symposium on operating systems principles (pp. 29–43). New York, USA.Google Scholar
  4. 4.
    Jones, T., Koniges, A., Yates, R. K. (2000). Performance of the IBM general parallel file system. In Proceedings of the IEEE international conference parallel and distributed processing symposium.(IPDPS) (pp. 673–681). Cancun, Mexico.Google Scholar
  5. 5.
    Zhao, T. Z., March, V., Dong, S. B., & See, S. (2010). Evaluation of a performance model of lustre file system, the fifth annual chinagrid conference (ChinaGrid) (pp. 191–196). China: Guangzho.Google Scholar
  6. 6.
    Ahlswede, R., Cai, N., Li, S.-Y. R., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory, 46(4), 1204–1216.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Papailiopoulos, D. S., Luo, J., & Dimakis, A. G. (2012). Simple regenerating codes: Network coding for cloud storage. In Proceedings of the IEEE INFOCOM (pp. 2801–2805). Orlando, USA.Google Scholar
  8. 8.
    Cadambe, V. R., Huang, C., & Li, J. (2011). Permutation code: Optimal exact-repair of a single failed node in MDS code based distributed storage systems. In Proceedings of the IEEE ISIT (pp. 1225–1229). St. Petersburg, Russia.Google Scholar
  9. 9.
    Dimakis, A. G., Ramchandran, K., Wu, Y., & Changho, S. (2011). A survey on network codes for distributed storage. Proceedings of the IEEE, 99(3), 476–489.CrossRefGoogle Scholar
  10. 10.
    Zhu, B., Shum, K. W., Li, H., & Hou, H. X. (2014). General fractional repetition codes for distributed storage systems. IEEE Communications Letters, 18(4), 660–663.CrossRefGoogle Scholar
  11. 11.
    Cadambe, V. R., Huang, C., Li, J., & Mehrotra, S. (2011). Polynomial length MDS codes with optimal repair in distributed storage. In Procedings of IEEE ASILOMAR (pp. 1850–1854). Pacific Grove, CA, USA.Google Scholar
  12. 12.
    Thangaraj, A., & Sankar, C. (2011). Quasicyclic MDS codes for distributed storage with efficient exact repair. IEEE information theory workshop (pp. 45–49). Paraty, Brazil.Google Scholar
  13. 13.
    Dai, M., Kwan, H. Y., & Sung, C. W. (2013). Linear network coding strategies for the multiple-access relay channel with packet erasures. IEEE Transactions on Wireless Communications, 12(1), 218–227.CrossRefGoogle Scholar
  14. 14.
    Seroussi, G., & Roth, R. M. (1986). On MDS extensions of generalized Reed-Solomon codes. IEEE Transactions on Information Theory, 32(3), 349–354.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Vingelmann, P., Pedersen, M. V., Fitzek, F. H. P., & Heide, J. (Oct. 2010). Multimedia distribution using network coding on the iPhone platform. In Proceedings of the ACM multimedia workshop on moobile cloud media computing ( pp. 1–5). Firenze, Italy.Google Scholar
  16. 16.
    Shahabinejad, M., Khabbazian, M., & Ardakani, M. (2014). An efficient binary locally repairable code for Hadoop distributed file system. IEEE Communications Letters, 18(8), 1287–1290.CrossRefGoogle Scholar
  17. 17.
    Heide, J., Pedersen, M. V., Fitzek, F. H. P., & Medard, M. (2011). On the code parameters and coding vector representation for practical RLNC. In Proceedings of the IEEE international conference in communications (pp. 1–5). Kyoto, Japan.Google Scholar
  18. 18.
    Vingelmann, P., Zanaty, P., Fitzek, F. H. P., Charaf, H. (2009). Implementation of random linear network coding on OpenGL-enabled graphics cards. In Proceedings of the IEEE EW (pp. 1–5). Aalborg, Denmark.Google Scholar
  19. 19.
    Hwang, M. S., & Lee, C. H. (2001). Secure access schemes in mobile database systems. Transactions on Emerging Telecommunications Communications Technology, 12(4), 303–310.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Piro, G., Grieco, L. A., Boggia, G., & Chatzimisios, P. (2014). Information-centric networking and multimedia services: Present and future challenges. Transactions on Emerging Telecommunications Communications Technology, 25(4), 392–406.CrossRefGoogle Scholar
  21. 21.
    Shibli, M.A., Masood, R., Ghazi, Y., Muftic , S. (2013). MagicNET: Mobile agents data protection system. In Transactions on Emerging Telecommunications Communications Technology, 26(5), 813–835.Google Scholar
  22. 22.
    Gollakota, S., Katabi, D. (2008). Zigzag decoding: Combating hidden terminals in wireless networks. In Proceedings of SIGCOM (pp. 159–170). New York, USA.Google Scholar
  23. 23.
    Blaum, M., Bruck, J., & Vardy, A. (1996). MDS array codes with independent parity symbols. IEEE Transactions on Information Theory, 42(2), 529–542.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tamo, I., Wang, Z., & Bruck, J. (2013). Zigzag codes: MDS array codes with optimal rebuilding. IEEE Transactions on Information Theory, 59(3), 1597–1616.MathSciNetCrossRefGoogle Scholar
  25. 25.
    En Gad, E., Mateescu, R., Blagojevic, F., Guyot, C., & Bandic, Z. (Jul. 2013). Repair-optimal MDS array codes over GF(2). In Proceedings of the IEEE ISIT (pp. 887–891), Istanbul, Turkey.Google Scholar
  26. 26.
    Xiao, M., Medard, M., & Aulin, T. (2007). A binary coding approach for combination networks and general erasure networks. In Proceedings of the IEEE ISIT, (pp. 786–790). Nice, France.Google Scholar
  27. 27.
    Li, J., Yuan, J., Malaney, R., Xiao, M., & Chen, W. (2012). Full-diversity binary frame-wise network coding for multiple-source multiple-relay networks over slow-fading channels. IEEE Transactions on Vehicular Technology, 61(3), 1346–1360.CrossRefGoogle Scholar
  28. 28.
    Sung, C. W., & Gong, X. (2013). A ZigZag-decodable code with the MDS property for distributed storage systems. In Proceedings of the IEEE ISIT (pp. 341–345). Istanbul, Turkey.Google Scholar
  29. 29.
    Hou, H., Shum, K. W., & Li, H. (2013). Construction of exact-basic codes for distributed storage systems at the MSR point. In Proceedings of the IEEE international conference on big data (pp. 33–38). Santa Clara, USA. .Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mingjun Dai
    • 1
    • 2
  • Zexin Lu
    • 1
    • 2
  • Dan Shen
    • 1
    • 2
  • Hui Wang
    • 1
    • 2
    Email author
  • Bin Chen
    • 1
    • 2
  • Xiaohui Lin
    • 1
    • 2
  • Shengli Zhang
    • 1
    • 2
  • Li Zhang
    • 1
    • 2
  • Hongwei Liu
    • 1
    • 2
  1. 1.Shenzhen Key Lab of Advanced Communication and Information Processing and Shenzhen Key Laboratory of Media SecurityCollege of Information Engineering, Shenzhen UniversityShenzhenChina
  2. 2.The State Key Laboratory of Integrated Services NetworksXidian University Xi’anChina

Personalised recommendations