Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Combining Binary Jamming and Network Coding to Improve Outage Performance in Two-Way Relaying Networks under Physical Layer Security

  • 139 Accesses

Abstract

By generating a jamming message at the jammer node, a system can reduce wiretapping in the physical layer because this message can refuse the illegal eavesdropper node. The network coding technique of operating an XOR between two binary messages improves the performance. In this paper, we propose three protocols that use network coding at the two source nodes and/or the binary jamming technique at a relay in the two-way relaying network under physical layer security, compared to a conventional secrecy transmission protocol. The main idea to improve the system performance is that, if the data is transmitted securely, the next transmission time slots using the digital network coding will not consider the presence of the eavesdropper node, because the eavesdropper node cannot obtain the data. The system performance is analyzed and evaluated in terms of the exact closed-form outage probability over Rayleigh fading channels. The simulation results using a Monte-Carlo simulation are in complete agreement with the theoretical results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Hong, Y.-W. P., Huang, W. J., & Kuo, C.-C. J. (2010). Cooperative communication and networking: Technologies and system design. Berlin: Springer.

  2. 2.

    Jamshidi, A., Nasiri-Kenari, M., & Taherpour, A. (2007). Outage probability analysis of a coded cooperative OFDM system in multipath Rayleigh fading channels. In IEEE 18th international symposium on, pers. indoor and mobile radio comm. (pp. 1–6)

  3. 3.

    Kharat, P. K., & Gavade, J. D. (2013). Cooperative communication: New trend in wireless communication. International Journal of Future Generation Communication and Networking, 6, 157–166.

  4. 4.

    Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless network. IEEE Communication Magazine, 42, 74–80.

  5. 5.

    Duy, T. T., & Kong, H. Y. (2014). Adaptive cooperative decode-and-forward transmission with power allocation under interference constraint. Wireless Personal Communication, 74, 401–414.

  6. 6.

    Sun, X., Wei, X., Jiang, M., & Zhao, C. (2013). Opportunistic selection for decode-and-forward cooperative networks with secure probabilistic constraints. Wireless Personal Communication, 70, 1633–1652.

  7. 7.

    Huang, C., & Zhang, Xiao-Ping. (2013). Performances of amplify-and-forward cooperative relay networks with different topologies. Wireless Personal Communication, 69, 561–577.

  8. 8.

    Kapucu, N., Bilim, M., & Develi, I. (2013). SER performance of amplify-and-forward cooperative diversity over asymmetric fading channels. Wireless Personal Communication, 73, 1117–1127.

  9. 9.

    Lai, L., & Gamal, H. E. (2008). The relay-eavesdropper channel. IEEE Transactions on Information Theory, 54, 4005–4019.

  10. 10.

    Perron, E., Diggavi, S., & Telatar, I.E. (2009). On cooperative wireless network secrecy, IEEE INFOCOM (pp. 1935-1943)

  11. 11.

    Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54, 1355–1387.

  12. 12.

    Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58, 1875–1888.

  13. 13.

    Krikidis, I., Thompson, J. S., & Mclaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions on Wirelss Communications, 8, 5003–5011.

  14. 14.

    Truc, T. T., & Kong, H. Y. (2014). An application of network-coding technique into cooperative jamming. In The 27th Biennial symposium on comm. (QBSC) (pp. 218–222)

  15. 15.

    Zhang, R., Song, L., Han, Z., & Jiao, B. (2012). Physical layer security for two-way untrusted relaying with friendly jammers. IEE Transactions on Vehicular Technology, 61, 3693–3704.

  16. 16.

    Son, P. N., & Kong, H. Y. (2014). Exact outage probability of a decode-and-forward scheme with best relay selection under physical layer security. Wireless Personal Communication, 74, 325–342.

  17. 17.

    Son, P. N., & Kong, H. Y. (2014). Exact outage probability of two-way decode-and-forward scheme with opportunistic relay selection under physical layer security. Wireless Personal Communication, 77, 2889–2917.

  18. 18.

    Son, P. N., & Kong, H. Y. (2014). An integration of source and jammer for a decode-and-forward two-way scheme under physical layer security. Wireless Personal Communication, 79, 1741–1764.

Download references

Author information

Correspondence to Hyung Yun Kong.

Appendices

Appendix 1: Solving the probability \(\Pr [ {AS{R_{SR}} > {R_t}} ]\) in (32)

From (5), we can calculate \(\Pr [ {AS{R_{SR}} > {R_t}} ]\) as follows

$$\begin{aligned} \Pr \left[ {AS{R_{SR}} > {R_t}} \right]= \Pr \left[ {\frac{1}{3}{{\log }_2}\left( {\frac{{1 + {\gamma _S}{{\left| {{h_1}} \right| }^2}}}{{1 + {\gamma _S}{{\left| {{h_2}} \right| }^2}}}} \right) > {R_t}} \right] \nonumber \\= \Pr \left[ {{{\left| {{h_1}} \right| }^2} > \frac{{{2^{3{R_t}}} - 1}}{{{\gamma _S}}} + {2^{3{R_t}}}{{\left| {{h_2}} \right| }^2}} \right] \end{aligned}$$
(48)

Let \({X_l}\) be i.i.d. exponential RVs \({| {{h_l}} |^2}\), \(l \in { {1,2,3,4,5} }\). Then, the probability density function (PDF) of \({X_l}\) is given by

$$\begin{aligned} {f_{{X_l}}}({x_l}) = {\lambda _l}{e^{ - {\lambda _l}{x_l}}} \end{aligned}$$
(49)

Substituting (49) into (48), we obtain

$$\begin{aligned} \Pr \left[ {AS{R_{SR}} > {R_t}} \right]= & {} \int _0^\infty {{f_{{X_2}}}} ({x_2})\int _{\frac{{{2^{3{R_t}}} - 1}}{{{\gamma _S}}} + {2^{3{R_t}}}{x_2}}^\infty {{f_{{X_1}}}} ({x_1})d{x_1}d{x_2}\nonumber \\= & {} \int _0^\infty {{\lambda _2}{e^{ - {\lambda _2}{x_2}}}} \int _{\frac{{{2^{3{R_t}}} - 1}}{{{\gamma _S}}} + {2^{3{R_t}}}{x_2}}^\infty {{\lambda _1}{e^{ - {\lambda _1}{x_1}}}} d{x_1}d{x_2}\nonumber \\= & {} \int _0^\infty {{\lambda _2}{e^{ - {\lambda _2}{x_2}}}} {e^{ - {\lambda _1}(\frac{{{2^{3{R_t}}} - 1}}{{{\gamma _S}}} + {2^{3{R_t}}}{x_2})}}d{x_1}\nonumber \\= & {} \frac{{{\lambda _2}{e^{ - \frac{{\left( {{2^{3{R_t}}} - 1} \right) {\lambda _1}}}{{{\gamma _S}}}}}}}{{{\lambda _2} + {2^{3{R_t}}}{\lambda _1}}} \end{aligned}$$
(50)

Appendix 2: Solving the Probability \(\Pr [ {{C_{RS}} > {R_t}} ]\) in (34)

From (14), we can calculate \(\Pr [ {{C_{RS}} > {R_t}} ]\) as follows

$$\begin{aligned} \Pr \left[ {{C_{RS}} > {R_t}} \right]= & {} \Pr \left[ {{{\left| {{h_1}} \right| }^2} > \frac{{{2^{3{R_t}}} - 1}}{{{\gamma _R}}}} \right] \nonumber \\= & {} \int _{\frac{{{2^{3{R_t}}} - 1}}{{{\gamma _R}}}}^\infty {{\lambda _1}{e^{ - {\lambda _1}{x_1}}}} d{x_1}\nonumber \\= &\, {e^{ - \frac{{\left( {{2^{3{R_t}}} - 1} \right) {\lambda _1}}}{{{\gamma _R}}}}} \end{aligned}$$
(51)

Appendix 3: Solving the Probability \(\Pr [ {AS{R_{RS}} > {R_t},AS{R_{RD}} > {R_t}} ]\) in (36)

From (19) and (20), we can express \(\Pr [ {AS{R_{RS}} > {R_t},AS{R_{RD}} > {R_t}} ]\) as follows

$$\begin{aligned} \Pr \left[ {AS{R_{RS}} > {R_t},AS{R_{RD}} > {R_t}} \right]= & {} \Pr \left[ \begin{array}{l} \frac{1}{5}{\log _2}\left( {\frac{{1 + {\gamma _R}{{\left| {{h_1}} \right| }^2}}}{{1 + {\gamma _R}{{\left| {{h_5}} \right| }^2}}}} \right) > {R_t},\\ \left[ {\frac{1}{5}{{\log }_2}\left( {\frac{{1 + {\gamma _R}{{\left| {{h_3}} \right| }^2}}}{{1 + {\gamma _R}{{\left| {{h_5}} \right| }^2}}}} \right) } \right] > {R_t} \end{array} \right] \nonumber \\= & {} \Pr \left[ \begin{array}{l} {\left| {{h_1}} \right| ^2} > \frac{{{2^{5{R_t}}} - 1}}{{{\gamma _R}}} + {2^{5{R_t}}}{\left| {{h_5}} \right| ^2},\\ {\left| {{h_3}} \right| ^2} > \frac{{{2^{5{R_t}}} - 1}}{{{\gamma _R}}} + {2^{5{R_t}}}{\left| {{h_5}} \right| ^2} \end{array} \right] \end{aligned}$$
(52)

Substituting (49) into (52), we obtain

$$\begin{aligned} \Pr \left[ {AS{R_{RS}} > {R_t},AS{R_{RD}} > {R_t}} \right]= & {} \int _0^\infty {{f_{{X_5}}}} ({x_5})\int _{\frac{{{2^{5{R_t}}} - 1}}{{{\gamma _R}}} + {2^{5{R_t}}}{x_5}}^\infty {{f_{{X_3}}}} ({x_3})\int _{\frac{{{2^{5{R_t}}} - 1}}{{{\gamma _R}}} + {2^{5{R_t}}}{x_5}}^\infty {{f_{{X_1}}}} ({x_1})d{x_1}d{x_3}d{x_5}\nonumber \\= & {} \int _0^\infty {{\lambda _5}{e^{ - {\lambda _5}{x_5}}}} \int _{\frac{{{2^{5{R_t}}} - 1}}{{{\gamma _R}}} + {2^{5{R_t}}}{x_5}}^\infty {{\lambda _3}{e^{ - {\lambda _3}{x_3}}}} \int _{\frac{{{2^{5{R_t}}} - 1}}{{{\gamma _R}}} + {2^{5{R_t}}}{x_5}}^\infty {{\lambda _1}{e^{ - {\lambda _1}{x_1}}}} d{x_1}d{x_3}d{x_5}\nonumber \\= & {} \int _0^\infty {{\lambda _5}{e^{ - {\lambda _5}{x_5}}}} {e^{ - {\lambda _3}\left( {\frac{{{2^{5{R_t}}} - 1}}{{{\gamma _R}}} + {2^{5{R_t}}}{x_5}} \right) }}{e^{ - {\lambda _1}\left( {\frac{{{2^{5{R_t}}} - 1}}{{{\gamma _R}}} + {2^{5{R_t}}}{x_5}} \right) }}d{x_5}\nonumber \\= & {} \frac{{{\lambda _5}{e^{ - \left( {{2^{5{R_t}}} - 1} \right) \left( {\frac{{{\lambda _3} + {\lambda _1}}}{{{\gamma _R}}}} \right) }}}}{{{\lambda _5} + {2^{5{R_t}}}\left( {{\lambda _3} + {\lambda _1}} \right) }} \end{aligned}$$
(53)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, S.Q., Kong, H.Y. Combining Binary Jamming and Network Coding to Improve Outage Performance in Two-Way Relaying Networks under Physical Layer Security. Wireless Pers Commun 85, 2431–2446 (2015). https://doi.org/10.1007/s11277-015-2913-1

Download citation

Keywords

  • Two-way relaying communication
  • Jamming
  • Network coding
  • Physical layer security
  • Decode-and-forward
  • Outage probability