Wireless Personal Communications

, Volume 84, Issue 2, pp 1509–1534 | Cite as

Proxy Mobile IPv6 Handover Management in Vehicular Networks: State of the Art, Taxonomy and Directions for Future Research

  • Mohammed BalfaqihEmail author
  • Mahamod Ismail
  • Rosdiadee Nordin
  • Zain A. Balfaqih


In vehicular communication networks, to facilitate the variety of intelligent transportation system (ITS) applications, handover management is considered as the one of the most challenging research issues. The most compatible and interoperable handover management solutions are designed based on IP mobility protocols. However, due to the unique characteristics of vehicles such as high velocity, IP mobility management protocols are still unacceptable for ITS real-time applications that are sensitive to network latencies. Thus, whenever the vehicle roams between two domains, which is most likely to occur in vehicular networks, its reachability status will be broken-down causing high handover latency and inevitable traffic loss. Recently, proxy mobile IPv6 (PMIPv6) has been proposed to support the mobility management without any intervention of the mobile user in the mobility-related signaling. As PMIPv6 will be deployed in the wireless technologies for next generation networks (i.e., LTE/LTE-advanced, WiFi and WiMAX), vehicular ad hoc networks (VANETs) are expected to employ PMIPv6 protocol in vehicle to infrastructure connection as well. In this paper, we introduce a comprehensive review of the state of the art of PMIPv6 handover management in VANET. We present a new taxonomy and classify the existing schemes according to different considerations. Finally, we outline several open issues and handoff management design considerations as a direction for future research.


IP mobility in VANET V2I PMIPv6 NEMO Seamless handoff Handover latency 


  1. 1.
    Johnson, D., Perkins, C., & Arkko, J. (2004). Mobility Support in IPv6. RFC 3775.Google Scholar
  2. 2.
    Soliman, H., Castelluccia, C., Malki, K. E., & Bellier, L. (2005). Hierarchical mobile IPv6 mobility management (HMIPv6). RFC 4140.Google Scholar
  3. 3.
    Koodli, R. (2005). Fast handovers for mobile IPv6. RFC 4068.Google Scholar
  4. 4.
    Lee, J. H., Bonnin, J.-M., Ilsun, Y., & Tai-Myoung, C. (2013). Comparative handover performance analysis of IPv6 mobility management protocols. IEEE Transactions on Industrial Electronics, 60(3), 1077–1088.CrossRefGoogle Scholar
  5. 5.
    Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K., & Patil, B. (2008). Proxy mobile IPv6. RFC 5213.Google Scholar
  6. 6.
    Hossain, M. S., & Atiquzzaman, M. (2012). Analysis of proxy mobile IPv6: A network-based mobility solution. In 2012 15th international conference on computer and information technology (ICCIT) (pp. 338–344).Google Scholar
  7. 7.
    Kellokoski, J., Koskinen, J., Rusanen, T., Kalliolahti, P., & Hämäläinen, T. (2013). Proxy mobile IPv6-based seamless handover. In Internet of things, smart spaces, and next generation networking, Lecture Notes in Computer Science (Vol. 8121, pp. 214–223).Google Scholar
  8. 8.
    Giust, F., Bernardos, C. J., & Oliva, A. D. L. (2014). Analytic evaluation and experimental validation of a network-based IPv6 distributed mobility management solution. IEEE Transactions on Mobile Computing, 13(11), 2484–2497.CrossRefGoogle Scholar
  9. 9.
    Ali-Ahmad, H., Ouzzif, M., Bertin, P., & Lagrange, X. (2014). Performance analysis on network-based distributed mobility management. Wireless Personal Communications, 74(4), 1245–1263.CrossRefGoogle Scholar
  10. 10.
    Lee, K. W., Seo, W. K., Cho, Y. Z., Kim, J. W., & Park, J. S. (2010). Inter-domain handover scheme using an intermediate mobile access gateway for seamless service in vehicular networks. International Journal of Communication Systems, 23(9–20), 1127–1144.CrossRefGoogle Scholar
  11. 11.
    Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., & Zedan, H. (2014). A comprehensive survey on vehicular ad hoc network. Journal of Network and Computer Applications, 37, 380–392.CrossRefGoogle Scholar
  12. 12.
    Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., & Weil, T. (2011). Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys & Tutorials, 13(4), 584–616.CrossRefGoogle Scholar
  13. 13.
    Cespedes, S., Xuemin, S., & Lazo, C. (2011). IP mobility management for vehicular communication networks: Challenges and solutions. IEEE Communications Magazine, 49(5), 187–194.CrossRefGoogle Scholar
  14. 14.
    Banda, L., Mzyece, M., & Noel, G. (2012). IP mobility support: Solutions for vehicular networks. IEEE Vehicular Technology Magazine, 7(4), 77–87.CrossRefGoogle Scholar
  15. 15.
    Sharef, B. T., Alsaqour, R. A., & Ismail, M. (2014). Vehicular communication ad hoc routing protocols: A survey. Journal of Network and Computer Applications, 40, 363–396.CrossRefGoogle Scholar
  16. 16.
    Lili, W., Jianfeng, G., Ilsun, Y., Huachun, Z., Deyun, G., Kangbin, Y., & Pankoo, K. (2014). Survey on distributed mobility management schemes for proxy mobile IPv6. In 2014 IEEE 11th consumer communications and networking conference (CCNC).Google Scholar
  17. 17.
    Modares, H., Moravejosharieh, A., Lloret, J., & Salleh, R. B. (2014). A survey on proxy mobile IPv6 handover. IEEE Systems Journal, 99, 1–10.CrossRefGoogle Scholar
  18. 18.
    Car-2-car communication consortium-manifesto.
  19. 19.
    Marshall, A. (2006). V2V: GM technology can prevent accidents. In GM Europe.Google Scholar
  20. 20.
    Anjum, F., Choi, S., Gligor, V. D., Herrtwich, R. G., Hubaux, J. P., Kumar, P. R., & Shorey, R. (2007). Vehicular networks. IEEE Journal on Selected Areas in Communications, 25(8), 1497–1500.CrossRefGoogle Scholar
  21. 21.
    Hartenstein, H., & Laberteaux, K. P. (2008). A tutorial survey on vehicular ad hoc networks. IEEE Communication Magazine, 46(6), 164–171.CrossRefGoogle Scholar
  22. 22.
    Chang, B.-J., Liang, Y.-H., & Yang, H. J. (2014). Performance analysis with traffic accident for cooperative active safety driving in VANET/ITS. Wireless Personal Communications, 74(2), 731–755.CrossRefGoogle Scholar
  23. 23.
    Lim, J.-Y., Chang, Y., Loo, J., & Alias, M. Y. (2015). Improving VANET performance with heuristic and adaptive fuzzy logic scheme. Wireless Personal Communications, 1–22. Google Scholar
  24. 24.
    Jiang, D., Taliwal, V., Meier, A., Holfelder, W., & Herrtwich, R. (2006). Design of 5.9 GHz DSRC-based vehicular safety communication. IEEE Wireless Communications, 13(5), 36–43.CrossRefGoogle Scholar
  25. 25.
    Olariu, S., & Weigle, M. C. (2009). Vehicular networks: From theory to practice (1st ed.). London: Chapman & Hall/CRC.CrossRefGoogle Scholar
  26. 26.
    Kiran, P. S., Rao, B. T., & Reddy, D. (2010). Architectural crises in vehicular ad hoc networks. Global Journal of Computer Science and Technology, 10, 31–35.Google Scholar
  27. 27.
    ITS JPO. (2008). Vehicle safety applications. Technical Report, US DOT IntelliDrive(sm) Project - ITS Joint Program Office.Google Scholar
  28. 28.
    SAFESPOT D8.4.4. (2008). Use cases, functional specifications and safety margin applications for the SAFESPOT Project. IST Safespot Project, Technical Report. Safespot IST-4-026963-IP deliverable D8.4.4, pp. 1–54.Google Scholar
  29. 29.
    VSC-A. (2009). Final Report. US DOT, Vehicle Safety Communications Applications (VSC-A) Project DOT HS 810 073.Google Scholar
  30. 30.
    ETSITR102638. (2009). Intelligent transport system (ITS); vehicular communications; basic set of applications; definition. ETSI Std., ETSI ITS Specification TR 102 638 version 1.1.1.Google Scholar
  31. 31.
    Kempf, J. (2007). Problem statement for network-based localized mobility management (NETLMM). Internet Engineering Task Force, RFC 4830.Google Scholar
  32. 32.
    Yokota, H., Chowdhury, K., Koodly, R., Patil, B., & Xia, F. (2010). Fast handovers for proxy mobile IPv6. RFC 5949.Google Scholar
  33. 33.
    Devarapalli, V., Wakikawa, R., Petrescu, A., & Thubert P. (2005). Network mobility (NEMO) basic support protocol. RFC 3963.Google Scholar
  34. 34.
    Kim, M., Lee, S., Cypher, D., & Golmie, N. (2013). Performance analysis of fast handover for proxy mobile IPv6. Information Sciences, 219, 208–224.CrossRefGoogle Scholar
  35. 35.
    Moon, S., Kim, M., Lee, S., Cypher, D., & Golmie, N. (2011). Fast handover with low latency for proxy MIPv6 in vehicular networks. In Proceedings of the 5th international conference on ubiquitous information management and communication (ICUIMC ‘11). New York: ACM.Google Scholar
  36. 36.
    Kim, M., Lee, S., & Golmie, N. (2012). Enhanced fast handover for proxy mobile IPv6 in vehicular networks. Wireless Networks, 18(4), 401–411.CrossRefGoogle Scholar
  37. 37.
    Tsourdos, S., Michalas, A., Sgora, A., & Vergados, D. (2014). Enhanced fast handovers for PMIPv6 in vehicular environments. In The 5th international conference on information, intelligence, systems and applications (pp. 420–425).Google Scholar
  38. 38.
    Lu, H., Zhang, S., & Lin, X. (2012). Mobility-assisted fast handover for proxy mobile IPv6 in vehicle-to-infrastructure communications. In Intelligent Transportation Systems (ITSC), 2012 15th International IEEE Conference on (pp. 921–926), Anchorage, 16–19 September, 2012.Google Scholar
  39. 39.
    Hussain, H. N., Bakar, K. A., & Salleh, S. (2011). A novel intra-domain continues handover solution for inter-domain Pmipv6 based vehicular network. International Journal of Advanced Computer Science and Applications, 2(12), 12–18. Google Scholar
  40. 40.
    Moravejosharieh, A., & Modares, H. (2014). A proxy MIPv6 handover scheme for vehicular ad-hoc networks. Wireless Personal Communications, 75(1), 609–626.CrossRefGoogle Scholar
  41. 41.
    Montavont, J., & Noel, T. (2006). IEEE 802.11 handovers assisted by GPS information. In IEEE international conference on wireless and mobile computing, networking and communications, (WiMob’2006) (pp. 166–172).Google Scholar
  42. 42.
    Sandonis, V., Calderon, M., Soto, I., & Bernardos, C. J. (2013). Design and performance evaluation of a PMIPv6 solution for geonetworking-based VANETs. Ad Hoc Networks, 11(7), 2069–2082.CrossRefGoogle Scholar
  43. 43.
    Hussain, H. N., Bakar, K. A., & Salleh, S. (2012). Using media independent handover to support PMIPv6 inter-domain mobility based vehicular networks. International Journal of Communication Networks and Information Security, 4(3), 182–195.Google Scholar
  44. 44.
    Ze-qun, H., Song-nan, B., & Jung, J. (2009). A MIH services based application-driven vertical handoff scheme for wireless networks. In Fifth international joint conference on INC, IMS and IDC, 2009. NCM’09 (pp. 1428–1431).Google Scholar
  45. 45.
    Meneguette, R. I., Bittencourt, L. F., & Madeira, E. R. (2013). A seamless flow mobility management architecture for vehicular communication networks. Journal of Communications and Networks, 15, 207–216.CrossRefGoogle Scholar
  46. 46.
    Dias, J., Cardote, A., Neves, F., Sargento, S., & Oliveira, A. (2012). Seamless horizontal and vertical mobility in VANET. In IEEE vehicular networking conference (VNC) (pp. 226–233).Google Scholar
  47. 47.
    Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 3: Network Architecture, ETSI TS 102 636-3, Mar. 2010, v1.1.1.Google Scholar
  48. 48.
    Intelligent Transport Systems (ITS); Vehicular Communications; Part 4: geographical addressing and forwarding for point-to-point and point-to-multipoint communications; Sub-Part 1: media-independent functionality, ETSI TS 102 636-4-1, Nov. 2010, v0.0.9.Google Scholar
  49. 49.
    Soto, I., Bernardos, C. J., Calderon, M., Banchs, A., & Azcorra, A. (2009). Nemo-enabled localized mobility support for internet access in automotive scenarios. IEEE Communications Magazine, 47(5), 152–159.CrossRefGoogle Scholar
  50. 50.
    Lee, H. B., Han, Y. H., & Min, S. G. (2009). Node mobility support scheme between the mobile network and PMIPv6 networks. In First international conference on networks and communications (pp. 93–97).Google Scholar
  51. 51.
    Lee, H. B., Han, Y. H., & Min, S. G. (2010). Network mobility support scheme on PMIPv6 networks. International Journal of Computer Networks & Communications, 2(5), 206–2012.CrossRefGoogle Scholar
  52. 52.
    Lee, H. B., Min, S. G., Lee, K. H., Lee, H. W., & Han, Y. H. (2010). PMIPv6-based NEMO protocol with efficient buffering scheme. In Proceedings of the 5th international conference on ubiquitous information technologies and applications (CUTE) (pp. 1–6).Google Scholar
  53. 53.
    SamuelRaj, A. J., Jayapal, S., & Varadharajan, V. (2014). Network mobility supported proxy mobile IPV6. Journal of Computer Science, 10(12), 1792–1797.CrossRefGoogle Scholar
  54. 54.
    SamuelRaj, A. J., & Jayapal, S. (2013). Reducing binding update in NEMO supported PMIPV6. International Journal of Computer Trends and Technology (IJCTT), 6(3), 150–157.Google Scholar
  55. 55.
    Dinakaran, M., & Balasubramanie, P. (2011). Integrating N-PMIPv6 and simultaneous bindings avoid packet loss in NEMO. International Journal of Computer Applications, 15(4), 33–36.CrossRefGoogle Scholar
  56. 56.
    Dinakaran, M., & Balasubramanie, P. (2012). Performance tuning of data transfer in vehicular networks. International Journal of Computer Science Issues (IJCSI), 9(1), 350–356.Google Scholar
  57. 57.
    Yan, Z., Zhou, H., & You, I. (2010). N-NEMO: A comprehensive network mobility solution in proxy mobile IPv6 network. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JOWUA), 1(2/3), 52–70.Google Scholar
  58. 58.
    Yan, Z., Zhang, S., Zhou, H., Zhang, H., You, I. (2010). Network mobility support in PMIPv6 network. In Proceedings of the 6th international wireless communications and mobile computing conference (IWCMC) (pp. 890–894).Google Scholar
  59. 59.
    Teraoka, F., & Arita, T. (2011). PNEMO: A network-based localized mobility management protocol for mobile networks. In Third international conference on ubiquitous and future networks (ICUFN) (pp. 168–173).Google Scholar
  60. 60.
    Arita, T., & Teraoka, F. (2012). PNEMO: A network-based localized mobility management protocol for mobile networks. Information and Media Technologies, 7(2), 861–871.Google Scholar
  61. 61.
    Lee, J. H., & Ernst, T. (2011). Lightweight network mobility within PMIPv6 for transportation systems. IEEE Systems Journal, 5(3), 352–361.CrossRefGoogle Scholar
  62. 62.
    Lee, J. H., Ernst, T., & Chilamkurti, N. (2012). Performance analysis of PMIPv6-based network mobility for intelligent transportation systems. IEEE Transactions on Vehicular Technology, 61(1), 74–85.CrossRefGoogle Scholar
  63. 63.
    Ryu, S., Choi, J.-W., & Park, K.-J. (2012). A scheme improving fast PMIPv6-based network mobility by eliminating tunneling overload for ITS. In Proceedings of IEEE intelligent vehicles symposium (pp. 1–5).Google Scholar
  64. 64.
    Ryu, S., Choi, J.-W., & Park, K.-J. (2013). Performance evaluation of improved fast PMIPv6-based network mobility for intelligent transportation systems. Journal of Communications and Networks, 15(2), 142–152.CrossRefGoogle Scholar
  65. 65.
    Ryu, S., & Mun Y. (2005). The tentative and early binding update for mobile IPv6 fast handover. In Proceeding of mobile ad-hoc and sensor networks (MSN), Lecture Notes in Computer Science (LNCS) (Vol. 3794, pp. 825–835).Google Scholar
  66. 66.
    Ryu, S., & Mun Y. (2007). A scheme to enhance TEBU scheme of fast handovers for mobile IPv6. In International conference in embedded software systems, Lecture Notes in Computer Science (LNCS) (Vol. 4523, pp. 773–782).Google Scholar
  67. 67.
    Tang, W., Tang, H., & Chen, L. (2013). Network mobility solution based on predictive fast handover in PMIPv6 domain. In 4th IEEE international conference on software engineering and service science (ICSESS) (pp. 587–590).Google Scholar
  68. 68.
    Jeon, S., & Kim, Y. (2011). Cost-efficient network mobility scheme over proxy mobile IPv6 network. Communications, Institution of Engineering and Technology (IET), 5(18), 2656–2661.Google Scholar
  69. 69.
    Han, S., & Jeong, J. (2012). Design and performance analysis of cost-effective and fast inter-domain network mobility schemes. In 2nd international conference on computer science and network technology (ICCSNT) (pp. 473–476).Google Scholar
  70. 70.
    Im, I., & Jeong, J. (2012). Security-Effective local-lighted authentication mechanism in NEMO-based fast proxy mobile IPv6 networks. International Journal of Digital Information and Wireless, 2(1), 86–103.Google Scholar
  71. 71.
    Im, I., & Jeong, J. (2012). Security-effective fast authentication mechanism for network mobility in proxy mobile IPv6 networks. In Second international conference on digital information processing and communications (ICDIPC) (pp. 90–95).Google Scholar
  72. 72.
    Xiong, K., Zhang, Y., Zhang, Z., Wang, S., & Zhong, Z. (2014). PA-NEMO: Proxy mobile IPv6-aided network mobility management scheme for 6LoWPAN. Elektronika Ir Eelektronika, 20(3), 98–103.Google Scholar
  73. 73.
    Nguyen, T. T., Bonnet, C., & Härri, J. (2013). Proxy mobile IPv6 for electric vehicle charging service: Use cases and analysis. In 2013 IEEE 24th international symposium in personal indoor and mobile radio communications (PIMRC), United Kingdom (pp. 127–131).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mohammed Balfaqih
    • 1
    Email author
  • Mahamod Ismail
    • 1
  • Rosdiadee Nordin
    • 1
  • Zain A. Balfaqih
    • 2
  1. 1.Department of Electrical, Electronic and System Engineering, Faculty of EngineeringUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia
  2. 2.Department of Information System, Faculty of EngineeringEffat UniversityJeddahSaudi Arabia

Personalised recommendations