Wireless Personal Communications

, Volume 84, Issue 2, pp 1209–1225 | Cite as

Non-orthogonal Amplify and Forward Relay Selection Systems with Distributed Space–Time Trellis Coded Continuous Phase Modulation

  • Ali Serdar Demiroğlu
  • İbrahim Altunbaş
  • Mehmet E. Çelebi


Most of the works on cooperative systems with or without relay selection have focused on linear modulations such as phase shift keying and quadrature amplitude modulation. Whereas, continuous phase modulation (CPM) is a good alternative to these modulations due to its constant envelope property which enables us to use inexpensive and energy-efficient non-linear power amplifiers. In the literature, a few works are based on relaying systems with CPM. To the best of our knowledge, none exists with relay selection. In this paper, we propose single and multiple relay selection CPM schemes based on a new generalized relay selection criterion for non-orthogonal amplify and forward (AF) systems operating with various time sharing protocols. In particular, using the proposed criterion, the best relay or the best two relays over a set of four available relays is/are selected. Error performances of the non-orthogonal AF relay selection systems and their counterparts are compared over frequency non-selective quasi-static Rayleigh fading channels using Viterbi algorithm at the destination terminal. Our numerical results present superiority of the proposed non-orthogonal relay selection systems.


Relay selection Continuous phase modulation Non-orthogonal amplify and forward relaying Distributed space–time codes Cooperative communications 


  1. 1.
    Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space–time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Laneman, J. N., & Wornell, G. W. (2000). Energy efficient antenna sharing and relaying for wireless networks. In Wireless communication and networking conference, Chicago, IL, USA.Google Scholar
  3. 3.
    Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.CrossRefGoogle Scholar
  4. 4.
    Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocol and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Laneman, J. N., Wornell, G. W., & Tse, D. N. C. (2001). An efficient protocol for realizing cooperative diversity in wireless networks. In IEEE international symposium on information theory, Washington DC, USA.Google Scholar
  6. 6.
    Mheidat, H., & Uysal, M. (2006). Impact of receive diversity on the performance of amplify-and-forward relaying under APS and IPS power constraints. IEEE Communications Letters, 10(6), 468–470.CrossRefGoogle Scholar
  7. 7.
    Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.CrossRefGoogle Scholar
  8. 8.
    Cover, T. M., & El Gamal, A. (1979). Capacity theorems for the relay channel. IEEE Transactions on Information Theory, 25(5), 572–584.zbMATHCrossRefGoogle Scholar
  9. 9.
    Wu, X., & Xie, L.-L. (2013). On the optimal compressions in the compress-and-forward relay schemes. IEEE Transactions on Information Theory, 59(5), 2613–2628.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Janani, M., Hedayat, A., Hunter, T. E., & Nosratinia, A. (2004). Coded cooperation in wireless communications: Space–time transmission and iterative decoding. IEEE Transactions on Signal Processing, 52(2), 362–371.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nabar, R. U., Bölcskei, H., & Kneubühler, F. W. (2004). Fading relay channels: Performance limits and space–time signal design. IEEE Journal of Selected Areas in Communications, 22(6), 1099–1109.CrossRefGoogle Scholar
  12. 12.
    Laneman, J. N., & Wornell, G. W. (2003). Distributed space–time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49(10), 2415–2425.zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Canpolat, O., Uysal, M., & Fareed, M. M. (2007). Analysis and design of distributed space–time trellis codes with amplify-and-forward relaying. IEEE Transactions on Vehicular Technology, 56(4), 1649–1660.CrossRefGoogle Scholar
  14. 14.
    Krikidis, I., Thompson, J., McLaughlin, S., & Goertz, N. (2008). Optimization issues for cooperative amplify-and-forward systems over block-fading channels. IEEE Transactions on Vehicular Technology, 57(5), 2868–2884.CrossRefGoogle Scholar
  15. 15.
    Azarian, K., El Gamal, H., & Schniter, P. (2005). On the achievable diversity multiplexing tradeoff in half-duplex cooperative channels. IEEE Transactions on Information Theory, 51(12), 4152–4172.zbMATHCrossRefGoogle Scholar
  16. 16.
    Srinivas, K. V., & Adve, R. (2011). An orthogonal relay protocol with improved diversity-multiplexing tradeoff. IEEE Transactions on Wireless Communications, 10(8), 2412–2416.CrossRefGoogle Scholar
  17. 17.
    Zheng, L., & Tse, D. N. C. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096.zbMATHCrossRefGoogle Scholar
  18. 18.
    Bletsas, A., Khisti, A., Reed, D., & Lippman, A. (2006). A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3), 659–672.CrossRefGoogle Scholar
  19. 19.
    Jing, Y., & Jafarkhani, H. (2009). Single and multiple relay selection schemes and their achievable diversity orders. IEEE Transactions on Wireless Communications, 8(3), 1414–1423.CrossRefGoogle Scholar
  20. 20.
    Zhao, Y., Adve, R., & Lim, T. J. (2006). Symbol error rate of selection amplify-and-forward relay systems. IEEE Communications Letters, 10(11), 757–759.CrossRefGoogle Scholar
  21. 21.
    Krikidis, I., Thompson, J., Mclaughlin, S., & Goertz, N. (2008). Amplify-and-forward with partial relay selection. IEEE Communications Letters, 12(4), 235–237.CrossRefGoogle Scholar
  22. 22.
    Ikki, S. S., & Ahmed, M. H. (2009). On the performance of adaptive decode-and-forward cooperative diversity with the Nth best-relay selection scheme. In IEEE global communications conference, Honolulu, HA, USA.Google Scholar
  23. 23.
    Ikki, S. S., & Ahmed, M. H. (2009). On the performance of amplify-and-forward cooperative diversity with the Nth best-relay selection scheme. In IEEE international conference on communications, Dresden, Germany.Google Scholar
  24. 24.
    Chen, L., Carrasco, R. A., & Wassell, I. J. (2011). Opportunistic nonorthogonal amplify-and-forward cooperative communications. IEEE Electronics Letters, 47(10), 626–628.CrossRefGoogle Scholar
  25. 25.
    Chen, L., Carrasco, R. A., & Wassell, I. J. (2012). Cooperative communications with opportunistic nonorthogonal amplify-and-forward relaying. In IEEE 75th vehicular technology conference, Yokohama, Japan.Google Scholar
  26. 26.
    Proakis, J. G., & Salehi, M. (2008). Digital communications (5th ed.). New York, NY: McGraw-Hill Companies Inc.Google Scholar
  27. 27.
    Maw, R. L., Martin, P. A., & Taylor, D. P. (2008). Cooperative relaying with CPFSK and distributed space–time trellis codes. IEEE Communications Letters, 12(5), 356–358.CrossRefGoogle Scholar
  28. 28.
    Silvester, A.-M., Lampe, L., & Schober, R. (2008). Distributed space–time continuous phase modulation code design. IEEE Transactions on Wireless Communications, 7(11), 4455–4461.CrossRefGoogle Scholar
  29. 29.
    Yang, Q., & Ho, P. (2011). Cooperative transmission with constant envelope modulations and phase-only forward relays. IEEE Transactions on Wireless Communications, 10(1), 114–123.CrossRefGoogle Scholar
  30. 30.
    Demiroğlu, A. S., Altunbaş, İ., & Çelebi, M. E. (2009). Distributed space–time MSK trellis codes for amplify and forward relaying. In 17th European signal processing conference, Glasgow, Scotland.Google Scholar
  31. 31.
    Demiroğlu, A. S., Altunbaş, İ., & Çelebi, M. E. (2010). Distributed space–time 4-CPFSK trellis codes for amplify and forward relaying. In 3rd international conference on communication theory, reliability, and quality of service, Athens, Greece.Google Scholar
  32. 32.
    Demiroğlu, A. S., & Altunbaş, İ. (2013). Distributed space–time trellis codes with continuous phase modulation for amplify and forward relaying. IET Communications, 52(2), 362–371.Google Scholar
  33. 33.
    Bletsas, A., Shin, H., & Win, M. (2007). Cooperative communications with outage-optimal opportunistic relaying. IEEE Transactions on Wireless Communications, 6(9), 3450–3460.CrossRefGoogle Scholar
  34. 34.
    Alcaraz, J. J., & Garcia-Haro, J. (2009). Performance of single-relay cooperative ARQ retransmission strategies. IEEE Communications Letters, 13(2), 121–123.CrossRefGoogle Scholar
  35. 35.
    Wang, H., Li, M., Lin, J., & Yang, S. (2012). Diversity-multiplexing-delay tradeoff in selection cooperation networks with ARQ. IEEE Transactions on Communications, 60(6), 1729–1740.CrossRefGoogle Scholar
  36. 36.
    Maham, B., Behnad, A., & Debbah, M. (2012). Analysis of outage probability and throughput for half-duplex hybrid-ARQ relay channels. IEEE Transactions on Vehicular Technology, 61(7), 3061–3070.CrossRefGoogle Scholar
  37. 37.
    Xiong, F., & Bhatmuley, S. (1997). Performance of MHPM in Rician and Rayleigh fading mobile channels. IEEE Transactions on Communications, 45(3), 279–283.CrossRefGoogle Scholar
  38. 38.
    Ertaş, T. (2001). Correlation type demodulation of 4-level full-response CPFSK signals (in Turkish). DEÜ Faculty of Engineering—Journal of Science and Engineering, 3(2), 1–12.Google Scholar
  39. 39.
    Altunbaş, İ. (2005). Space–time trellis codes for MSK. Computers and Electrical Engineering, 31(4–5), 263–271.zbMATHCrossRefGoogle Scholar
  40. 40.
    Hong, S. K., Chung, J. M., Yun, Y., & Kwon, S. L. (2005). Space–time codes for quaternary CPFSK systems with large number of receiver antennas. AEÜ—International Journal of Electronics and Communication, 59(8), 486–490.CrossRefGoogle Scholar
  41. 41.
    Hong, S. K., & Chung, J. M. (2006). Space–time codes for CPFSK with arbitrary number of receive antennas. IEEE Transactions on Communications, 5(11), 2988–2991.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ali Serdar Demiroğlu
    • 1
    • 2
  • İbrahim Altunbaş
    • 1
  • Mehmet E. Çelebi
    • 1
  1. 1.Electronics and Communications Engineering Departmentİstanbul Technical Universityİstanbul-MaslakTurkey
  2. 2.Netaş Headquartersİstanbul-KurtköyTurkey

Personalised recommendations