Wireless Personal Communications

, Volume 84, Issue 2, pp 1069–1088 | Cite as

Solving Scalability Problems on Secure RFID Grouping-Proof Protocol

  • Cheng-Ter Hsi
  • Yuan-Hung Lien
  • Jung-Hui Chiu
  • Henry Ker-Chang Chang


Scalable grouping-proof protocol has broad and various RFID applications. It generates a proof to confirm scalable multiple co-existing tags within timeout period. The scalability problems focus on performance of generating the scalable grouping-proof, such as messages relay, collision, exhaustive search and computation load of lightweight tag. No integrated solution is presented to scalability problems on RFID grouping-proof. In this paper, a novel protocol is proposed to solve scalability problems and offer secure properties including the mutual authentication, replay attack prevention, forward security, anonymity, and forge proof resistance. In addition, the pseudo identity with direct search is used to provide the privacy and unlinkability. The proposed mechanism adopts broadcast and pre-ordering responses scheme to improve system performance. The achievement is based on reducing the number of message relay, avoiding collision of responses and computing simultaneously of multiple lightweight tags. The experimental results of simulation show that the scalability requirements on grouping-proof protocol are satisfied with our protocol. Within timeout period of 400 ms, the proposed protocol could provide a proof with a scale up to about 130 and 600 tags under data rate of 105 and 640 kbps. The scalability performance of the proposed protocol is more than 3 times better than the other grouping-proof protocols.


RFID Scalability Grouping-proof Message relay Collision Exhaustive search Pseudo identity Performance Security Privacy 


  1. 1.
    Erguler, I., & Anarim, E. (2011). Scalability and security conflict for RFID authentication protocols. Wireless Personal Communications, 59(1), 43–56.CrossRefGoogle Scholar
  2. 2.
    Song, B., & Mitchell, C. J. (2011). Scalable RFID security protocols supporting tag ownership transfer. Computer Communications, 34(4), 556–566.CrossRefGoogle Scholar
  3. 3.
    Alomair, B., & Poovendran, R. (2010). Privacy versus scalability in radio frequency identification systems. Computer Communications, 33(18), 2155–2163.CrossRefGoogle Scholar
  4. 4.
    Duc, D. N., & Kim, K. (2009). Grouping-proof protocol for RFID tags: Security definition and scalable construction. International Association for Cryptologic Research, ePrint, 609, 1–9.Google Scholar
  5. 5.
    Juels, A. (2004). Yoking-proofs for RFID tags. Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops (pp. 138–143). DC, USA.Google Scholar
  6. 6.
    Bolotnyy, L. & Robins, G. (2006). Generalized yoking-proofs for a group of RFID tags. Proceedings of IEEE International Conference on Mobile and Ubiquitous Systems (pp. 1–4). San Jose, California.Google Scholar
  7. 7.
    Lin, C.-C., Lai, Y.-C., Tygar, J. D., Yang, C.-K., Chiang C.-L. (2007). Coexistence proof using chain of timestamps for multiple RFID tags. In The Proceedings of APWeb/WAIM International Workshop (pp. 634–643). Springer LNCS 5189.Google Scholar
  8. 8.
    Cho, J.-S., Yeo, S.-S., Hwang, S., Rhee, S.-Y., Kim, S. K. (2008). Enhanced yoking proof protocols for RFID tags and tag groups. Proceedings of the 22nd Advanced Information Networking and Applications (pp. 1591–1596). Okinawa, Japan.Google Scholar
  9. 9.
    Saito, J. & Sakural, K. (2005). Grouping proof for RFID tags. Proceedings of the 19th International Conference On AINA’05 (pp. 621–624). Taipei, Taiwan.Google Scholar
  10. 10.
    Piramuthu, S. (2006). On existence proofs for multiple RFID tags. In The Proceedings of ACS/IEEE International Conference on Pervasive Services, IEEE Computer Society (pp. 317–320). Lyon, France.Google Scholar
  11. 11.
    Burmester, M., Medeiros, B. de, Motta, R. (2008). ‘Provably secure grouping-proofs for RFID tags. In The Proceedings of CARDIS International Conference (pp. 176–190). Springer LNCS 5189.Google Scholar
  12. 12.
    Duc, D.N., Kim, J., Kim, K. (2010). Scalable grouping-proof protocol for RFID tags. 2010 Symposium on Cryptography and Information Security (pp. 19–22). Japan: Takamatsu.Google Scholar
  13. 13.
    Duc, D. N., Konidala, D. M., Lee, H., & Kim, K. (2010). A survey on RFID security and provably secure grouping-proof protocols. International Journal of Internet Technology and Secured Transactions, 2(3–4), 222–249.CrossRefGoogle Scholar
  14. 14.
    Duc, D. N., & Kim, K. (2010). On the security of RFID group scanning protocols. IEICE Transactions on Information and Systems, 93(3), 528–530.Google Scholar
  15. 15.
    Lo, N.-W., & Yeh, K.-H. (2010). Anonymous coexistence proofs for RFID tags. Journal of Information Science and Engineering, 26, 1213–1230.Google Scholar
  16. 16.
    Peris-Lopez, P., Orfila, A., Hernandez-Castro, J., & van der Lubbe, J. C. A. (2011). Flaws on RFID grouping-proofs. Guidelines for future sound protocols. Journal Network and Computer Applications, 34(3), 833–845.CrossRefGoogle Scholar
  17. 17.
    Peris-Lopez, P., Orfila, A., Mitrokotsa, A., & van der Lubbe, J. C. A. (2011). A comprehensive RFID solution to enhance inpatient medication safety. International Journal of Medical Informatics, 80(1), 13–24.CrossRefGoogle Scholar
  18. 18.
    Huang, H., & Ku, C. (2009). A RFID grouping proof protocol for medication safety of inpatient. Journal Medical Systems, 33(6), 467–474.CrossRefGoogle Scholar
  19. 19.
    Chien, H., Yang, C., Wu, T., & Lee, C. (2011). Two RFID-based solutions to enhance inpatient medication safety. Journal Medical Systems, 35(3), 369–375.CrossRefGoogle Scholar
  20. 20.
    Leng, X., Lien, Y., Mayes, K., & Markantonakis, K. (2010). An RFID grouping proof protocol exploiting anti-collision algorithm for subgroup dividing. International Journal of Security and Networks, 5(23), 79–86.CrossRefGoogle Scholar
  21. 21.
    Liu, Y.-L., Qin, X.-L., Li, B.-H., & Liu, L. (2012). A forward-secure grouping-proof protocol for multiple RFID tags. International Journal of Computational Intelligence Systems, 5(5), 824–833.CrossRefGoogle Scholar
  22. 22.
    Ma, C., Lin, J., Wang, Y., Shang, M. (2012). Offline RFID grouping proofs with trusted timestamps. TRUSTCOM ‘12 Proceedings of the 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications (pp. 674–681). Liverpool, UK.Google Scholar
  23. 23.
    Semtech International AG (2006) FCC Regulations for ISM Band Devices: 902–928 MHz.Google Scholar
  24. 24.
    He, M., Horng, S.-J., Fan, P., Khan, M. K., Run, R.-S., Lai, J.-L., & Chen, R.-J. (2011). A fast RFID tag identification algorithm based on counter and stack. Expert Systems with Applications, 38, 6829–6838.CrossRefGoogle Scholar
  25. 25.
    International Organization for Standardization (2003) ISO/IEC 18000-3. Information Technology AIDC Techniques—RFID for Item Management.Google Scholar
  26. 26.
    Peris-Lopez, P., Hernandez-Castro, J., Estevez-Tapiador, J., & Ribagorda, A. (2009). LAMED—A PRNG for EPC Class-1 Generation-2 RFID specification. Computer Standards & Interfaces, 31, 88–97.CrossRefGoogle Scholar
  27. 27.
    Melia-Segui, J., Garcia-Alfaro, J., & Herrera-Joancomarti, J. (2010). Analysis and improvement of a pseudorandom number generator for EPC Gen2 tags. Financial Cryptography and Data Security, 6054, 34–46.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Cheng-Ter Hsi
    • 1
  • Yuan-Hung Lien
    • 2
  • Jung-Hui Chiu
    • 1
  • Henry Ker-Chang Chang
    • 3
  1. 1.Department of Electrical EngineeringChang Gung UniversityTao-YuanTaiwan, ROC
  2. 2.Department of Innovations in Digital LivingLan Yang Institute of TechnologyYilanTaiwan, ROC
  3. 3.Department of Information ManagementChang Gung UniversityTao-YuanTaiwan, ROC

Personalised recommendations