Advertisement

Wireless Personal Communications

, Volume 84, Issue 1, pp 623–641 | Cite as

Performance Analysis of the IEEE 802.16 Uplink for Best-Effort Traffic

  • B. N. Bhandari
  • R. V. Raja Kumar
  • S. L. Maskara
Article
  • 89 Downloads

Abstract

The IEEE 802.16 has a reservation based, centralized approach for allocating bandwidth on the upstream channel. In this paper, we proposed a queue length based weighted round robin (QL-WRR) scheduling algorithm to assess the efficient usage of upstream bandwidth of the IEEE 802.16 MAC protocol. This scheduling algorithm provides fairness. In QL-WRR scheduling algorithm, the scheduler takes the arrival rates of packets at the SS’s into account. A mathematical model is developed to determine the probability transmission by an SS, and probability of collision in a minislot. These parameters are used to obtain the uplink performance. The proposed mathematical model allows the dynamic variation of ratio between contention and data minislots according to the network load to improve the uplink utilization.

Keywords

BWA WMAN Uplink MAP QoS Aggregated traffic Uplink utilization Waiting time Backoff delay  Bandwidth grants 

References

  1. 1.
    IEEE P802.11. (1997). Draft standard for wireless LAN medium access control (MAC) and physical layer (PHY) specifications. In IEEE.Google Scholar
  2. 2.
    IEEE Standard. (1999). 802.11b-1999 part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. In Higher-speed physical extension in the 2.4 GHz band, IEEE.Google Scholar
  3. 3.
    Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.CrossRefGoogle Scholar
  4. 4.
    IEEE 802.16-2001. (2002). IEEE standard for local and metropolitan area networks—Part 16: Air interface for fixed broadband wireless access systems for 10–66 GHz.Google Scholar
  5. 5.
    IEEE P802.16a/D3-2001. (2002). Draft amendment to IEEE standard for local and metropolitan area networks—Part 16: Air interface for fixed wireless access systems—Medium access control modifications and additional physical layers specifications for 2–11 GHz.Google Scholar
  6. 6.
    IEEE 802.16d. (2004). Draft IEEE standard for local and metropolitan area networks—Part 16: Air interface for fixed broadband wireless access systems.Google Scholar
  7. 7.
    IEEE Draft Std 802.16e/D7. (2005). Draft IEEE standard for local and metropolitan area networks part 16: Air interface for fixed and mobile broadband wireless access systems. In IEEE P802.16e/D7.Google Scholar
  8. 8.
    Honcharenko, W., Kruys, J. P., Lee, D. Y., & Shah, N. J. (1997). Broadband wireless access. IEEE Communications Magazine, 35, 20–26.Google Scholar
  9. 9.
    Boleskei, H., Paulraj, A. J., Hari, K. V., & Nabar, R. U. (2001). Fixed broadband wireless access: State of the art, challenges, and future directions. IEEE Communications Magazine, 39, 100–108.Google Scholar
  10. 10.
    Eklund, C., Marks, R. B., Stanwood, K. L., & Wang, S. (2002). IEEE standard 802.16: A technical overview of the wireless \(MAN^{TM}\) air interface for broadband wireless access. IEEE Communications Magazine, 40, 98–107.Google Scholar
  11. 11.
    Wongthavarawat, K., & Ganz, A. (2003). Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems. International Journal of Communication Systems, 16, 81–96.CrossRefGoogle Scholar
  12. 12.
    Wang, H., He, B., & Agrawal, D. P. (2007). Above packet level admission control and bandwidth allocation for IEEE 802.16 wireless MAN. Journal of Simulation Modeling Practice and Theory, 15, 366–382.CrossRefGoogle Scholar
  13. 13.
    Hou, F., Ho, P.-H., & Shen, X. (2006). Performance analysis of a reservation based connection admission scheme. In Proceedings of IEEE GLOBECOM (pp. 1–5).Google Scholar
  14. 14.
    Niyato, D., & Hossain, E. (2006). Queue-aware uplink bandwidth allocation and rate control for polling service in IEEE 802.16broadband wireless networks. IEEE Transactions on Mobile Computing, 5(6), 668–679.CrossRefGoogle Scholar
  15. 15.
    Cho, D.-H., Song, J.-H., Kim, M.-S., & Han, K.-J. (2005). Performance analysis of the IEEE 802.16 wireless metropolitan area network. In Proceedigns of DFMA (pp. 130–136).Google Scholar
  16. 16.
    Oh, S.-M., & Kim, J.-H. (2005). The analysis of the optimal contention period for broadband wireless access networks. In 3rd Proceedings of PerCom 2005 workshops (pp. 215–219).Google Scholar
  17. 17.
    Vinel, A., Zhang, Y., Lott, M., & Tiurlikov, A. (2005). Performance analysis of the random access in IEEE 802.16. In Proceedings of 16th IEEE international symposium on personal, indoor and mobile radio communications (PIMRC’05) (Vol. 3, pp. 1596–1600). Berlin, Germany, Sep. 2005.Google Scholar
  18. 18.
    Doha, A., Hassanein, H., & Takahara, G. (2006). Performance evaluation of reservation medium access control in IEEE 802.16 networks. In IEEE International conference on computer systems and applications (pp. 369–374).Google Scholar
  19. 19.
    He, J., Guild, K., Yang, K., & Chen, H.-H. (2007). Modeling contention based bandwdith request scheme for IEEE 802.16 networks. IEEE Communications Letters, 11(8), 698–700.CrossRefGoogle Scholar
  20. 20.
    Chen, L.-W., & Tseng, Y.-C. (2008). Design and analysis of contention-based request schemes for best-effort traffics in IEEE 802.16 networks. IEEE Communications Letters, 12(8), 602–604.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • B. N. Bhandari
    • 1
  • R. V. Raja Kumar
    • 2
  • S. L. Maskara
    • 3
  1. 1.JNTUHHyderabadIndia
  2. 2.IIT KharagpurKharagpurIndia
  3. 3.G-2W, Soura Niloy Housing ComplexKolkataIndia

Personalised recommendations