Wireless Personal Communications

, Volume 81, Issue 4, pp 1437–1454 | Cite as

Deployment of Wireless Sensor Networks in Crop Storages

  • Jakob Pilegaard Juul
  • Ole Green
  • Rune Hylsberg Jacobsen


In the agricultural domain, proper storage conditions of crops is important to avoid losses due to degradation of crop quality. Currently, monitoring storages is often done manually and by using only a few samples. This makes the process time-consuming and in many cases the few samples taken cannot ensure a good overview of the entire storage. This paper describes the challenges of providing a good network coverage, sufficient network lifetime, a physical design able to cope with the harsh environments met in deployments, and cost. How these challenges were approached in the development of a wireless sensor network based system that provides continuous, automatic, and up-to-date information on a crop storage, while presenting the data in an easily accessible manner, is also described. The design decisions, challenges, and practical experiences from real-world large scale deployment of the system are also discussed. It is concluded that the network works well for the intended application and that the intended users also see a value in the provided service.


Wireless sensor networks WSN Agriculture Crop storage 


  1. 1.
    Abad, E., Palacio, F., Nuin, M., de Zárate, A. G., Juarros, A., Gómez, J., & Marco, S. (2009). RFID smart tag for traceability and cold chain monitoring of foods: Demonstration in an intercontinental fresh fish logistic chain. Journal of Food Engineering, 93(4), 394–399. doi: 10.1016/j.jfoodeng.2009.02.004. URL
  2. 2.
    Abbasi, A. Z., Islam, N., & Shaikh, Z. A. (2014). A review of wireless sensors and networks’ applications in agriculture. Computer Standards & Interfaces, 36(2), 263–270. doi: 10.1016/j.csi.2011.03.004. URL
  3. 3.
    Anastasi, G., Farruggia, O., Lo Re, G., & Ortolani, M. (2009). Monitoring high-quality wine production using wireless sensor networks. In 2009 42nd Hawaii International Conference on System Sciences, IEEE. pp. 1–7. doi: 10.1109/HICSS.2009.313. URL
  4. 4.
    Beckwith, R., Teibel, D., & Bowen, P. (2004). Report from the field: results from an agricultural wireless sensor network. In 29th Annual IEEE International Conference on Local Computer Networks, pp. 471–478. IEEE (Comput. Soc.). doi: 10.1109/LCN.2004.105. URL
  5. 5.
    Castillo-Effen, M., Quintela, D., Jordan, R., Westhoff, W., & Moreno, W. (2004). Wireless sensor networks for flash-flood alerting. In Proceedings of the Fifth IEEE International Caracas Conference on Devices, Circuits and Systems, 2004, vol. 1, pp. 142–146. IEEE. doi: 10.1109/ICCDCS.2004.1393370. URL
  6. 6.
    Díaz, S.E., Pérez, J. C., Mateos, A. C., Marinescu, M. C., & Guerra, B. B. (2011) A novel methodology for the monitoring of the agricultural production process based on wireless sensor networks. Computers and Electronics in Agriculture, 76(2), 252–265. doi: 10.1016/j.compag.2011.02.004. URL
  7. 7.
    Evans, R., & Iversen, W. (2008) Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Transactions on Instrumentation and Measurement, 57(7), 1379–1387. doi: 10.1109/TIM.2008.917198. URL
  8. 8.
    Fonseca, R., Gnawali, O., Jamieson, K., Kim, S., Levis, P., & Woo, A. (2006). The collection tree protocol (CTP), pp. 1–7. URL
  9. 9.
    Gao, T., Greenspan, D., Welsh, M., Juang, R., & Alm, A. (2005). Vital signs monitoring and patient tracking over a wireless network. In Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference 1, pp. 102–105, doi: 10.1109/IEMBS.2005.1616352. URL
  10. 10.
    Green, O., Nadimi, E. S., Blanes-Vidal, V., Jørgensen, R. N., Storm, I. M. D., & Sørensen, C. G. (2009). Monitoring and modeling temperature variations inside silage stacks using novel wireless sensor networks. Computers and Electronics in Agriculture, 69(2), 149–157. doi: 10.1016/j.compag.2009.07.021. URL
  11. 11.
    Hayes, J., Crowley, K., & Diamond, D. (2005). Simultaneous web-based real-time temperature monitoring using multiple wireless sensor networks. In IEEE Sensors, 2005. pp. 281–284. IEEE. doi: 10.1109/ICSENS.2005.1597691. URL
  12. 12.
    He, J., Wang, J., He, D., Dong, J., & Wang, Y. (2011). The design and implementation of an integrated optimal fertilization decision support system. Mathematical and Computer Modelling,54(3–4), 1167–1174. doi: 10.1016/j.mcm.2010.11.050. URL
  13. 13.
    Khan, J. Y., Yuce, M. R., Bulger, G., & Harding, B. (2012). Wireless body area network (WBAN) design techniques and performance evaluation. Journal of Medical Systems 36(3), 1441–1457. doi: 10.1007/s10916-010-9605-x. URL
  14. 14.
    Kim, Y., & Evans, R. (2009). Software design for wireless sensor-based site-specific irrigation. Computers and Electronics in Agriculture, 66(2), 159–165. doi: 10.1016/j.compag.2009.01.007. URL
  15. 15.
    Larsen, J. J., Green, O., Nadimi, E. S., & Toftegaard, T. S. d. (2011). The effect on wireless sensor communication when deployed in biomass. Sensors, 11(9), 8295–8308. doi: 10.3390/s110908295. URL
  16. 16.
    Latré, B., Braem, B., Moerman, I., Blondia, C., & Demeester, P. (2010). A survey on wireless body area networks. Wireless Networks, 17(1), 1–18. doi: 10.1007/s11276-010-0252-4. URL
  17. 17.
    Løkke, M. M., Seefeldt, H. F., Edwards, G., & Green, O. (2011). Novel wireless sensor system for monitoring oxygen, temperature and respiration rate of horticultural crops post harvest. Sensors (Basel, Switzerland), 11(9), 8456–8468. doi: 10.3390/s110908456. URL
  18. 18.
    Marti, M., Kusy, B., Simon, G., & Ldeczi, k. (2004). The flooding time synchronization protocol. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems - SenSys ’04, p. 39. New York: ACM Press. doi: 10.1145/1031495.1031501. URL
  19. 19.
    Meyer, G. G., Främling, K., & Holmström, J. (2009) Intelligent products: A survey. Computers in Industry, 60(3), 137–148. doi: 10.1016/j.compind.2008.12.005. URL
  20. 20.
    Morais, R., Fernandes, M. A., Matos, S. G., Serôdio, C., Ferreira, P., & Reis, M. (2008). A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture. Computers and Electronics in Agriculture, 62(2), 94–106. doi: 10.1016/j.compag.2007.12.004. URL
  21. 21.
    Nadimi, E., Sogaard, H., Bak, T., & Oudshoorn, F. (2008). ZigBee-based wireless sensor networks for monitoring animal presence and pasture time in a strip of new grass. Computers and Electronics in Agriculture, 61(2), 79–87. doi: 10.1016/j.compag.2007.09.010. URL
  22. 22.
    Nadimi, E. S., Sogaard, H., & Bak, T. (2008). ZigBee-based wireless sensor networks for classifying the behaviour of a herd of animals using classification trees. Biosystems Engineering, 100(2), 167–176. doi: 10.1016/j.biosystemseng.2008.03.003. URL
  23. 23.
    Pottie, G. J., & Kaiser, W. J. (2000). Wireless integrated network sensors. Communications of the ACM, 43(5), 51–58. doi: 10.1145/332833.332838. URL
  24. 24.
    Ruiz-Garcia, L., Barreiro, P., Rodríguez-Bermejo, J., & Robla, J. (2007). Review. Monitoring the intermodal, refrigerated transport of fruit using sensor networks. Spanish Journal of Agricultural Research, 5(2), 142. doi: 10.5424/sjar/2007052-234. URL
  25. 25.
    Ruiz-Garcia, L., Lunadei, L., Barreiro, P., & Robla, J. I. (2009). A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors (Basel, Switzerland), 9(6), 4728–50. doi: 10.3390/s90604728. URL
  26. 26.
    Ruiz-Garcia, L., Steinberger, G., & Rothmund, M. (2010). A model and prototype implementation for tracking and tracing agricultural batch products along the food chain. Food Control, 21(2), 112–121. doi: 10.1016/j.foodcont.2008.12.003. URL
  27. 27.
    Shan, Q., Liu, Y., Prosser, G., & Brown, D. (2004). Wireless intelligent sensor networks for refrigerated vehicle. In Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication (IEEE Cat. No.04EX710), Vol. 2, pp. 525–528. IEEE. doi: 10.1109/CASSET.2004.1321941.URL
  28. 28.
    Simon, G., Marti, M., Ldeczi, k., Balogh, G., Kusy, B., Ndas, A., et al. (2004). Sensor network-based countersniper system. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems - SenSys ’04, pp. 1–12. New York: ACM Press. doi: 10.1145/1031495.1031497. URL
  29. 29.
    Vervest, P. H., van Heck, E., Preiss, K., & Pau, L. F. (2005). Smart business networks. New York: Springer.CrossRefGoogle Scholar
  30. 30.
    Wark, T., Corke, P., Sikka, P., Klingbeil, L., Guo, Y., Crossman, C., Valencia, P., Swain, D., & Bishop-Hurley, G. (2007) Transforming agriculture through pervasive wireless sensor networks. IEEE Pervasive Computing, 6(2), 50–57. doi: 10.1109/MPRV.2007.47. URL
  31. 31.
    Werner-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., & Welsh, M. (2006). Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2), 18–25. doi: 10.1109/MIC.2006.26. URL
  32. 32.
    Yick, J., Mukherjee, B., & Ghosal, D. (2005). Analysis of a prediction-based mobility adaptive tracking algorithm. In 2nd International Conference on Broadband Networks, 2005, pp. 809–816. IEEE. doi: 10.1109/ICBN.2005.1589681. URL
  33. 33.
    Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330. doi: 10.1016/j.comnet.2008.04.002. URL
  34. 34.
    Yoo, S.e., Kim, J.e., Kim, T., Ahn, S., Sung, J., & Kim, D. (2007). A2S: Automated agriculture system based on WSN. In 2007 IEEE International Symposium on Consumer Electronics, pp. 1–5. IEEE. doi: 10.1109/ISCE.2007.4382216. URL

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jakob Pilegaard Juul
    • 1
    • 2
  • Ole Green
    • 2
  • Rune Hylsberg Jacobsen
    • 1
  1. 1.Department of EngineeringAarhus UniversityAarhusDenmark
  2. 2.Kongskilde Strategic DevelopmentKongskilde Industries A/SSorøDenmark

Personalised recommendations