Advertisement

Wireless Personal Communications

, Volume 83, Issue 2, pp 1183–1202 | Cite as

New Dynamic Resource Utilization Technique Based on Fractional Frequency Reuse

  • M. K. SalmanEmail author
  • Badlishah Ahmad
  • Abid Yahya
Article
  • 109 Downloads

Abstract

Worldwide interoperability for microwave access (WiMAX) base stations (BS) use the fractional frequency reuse (FFR) technique to control inter-cell interference in cellular networks. One of the challenges in FFR is the unused radio resource in the downlink (DL) sub-frame. This paper proposes a dynamic resource utilization approach to eliminate the resource wastage typical of the conventional FFR technique. The proposed approach not only enhances the radio resource utilization of the BS efficiently, but also takes into account the variations in the population density. We deal with the partial usage of sub-channel mode in the DL sub-frame of the WiMAX BS based on orthogonal frequency division multiplexing access. A new FFR data rate formula is derived based on theoretical analysis. Quantitative measurements demonstrate that the dynamic model gives optimal results, enhancing the conventional FFR in terms of a variety of metrics. The data rate, subcarrier efficiency, and spectral efficiency are increased by 2.176 Mbps, 0.14 bit/subcarrier/burst, and 0.218 bps/Hz, respectively. In addition, in the new approach, the DL sub-frame is fully utilized (100 %), the number of served users is increased by 28.57 %, and the number of utilized slots is increased by 34.48 %. The effective utilization of resources and bandwidth characteristic of this approach makes it a strong candidate for BS deployment in cellular networks where the user density changes constantly.

Keywords

WiMAX FFR Population density Dynamic radio resource utilization BS performance 

References

  1. 1.
    IEEE-Sta. (2004). IEEE standard for local and metropolitan area networks part 16: Air interface for fixed broadband wireless access systems. IEEE Std 802.16-2004 (Revision of IEEE Std 802.16-2001) (pp. 0_1–857).Google Scholar
  2. 2.
    IEEE-Sta. (2006). IEEE standard for local and metropolitan area networks part 16: Air interface for fixed and mobile broadband wireless access systems amendment 2: Physical and medium access control layers for combined fixed and mobile operation in licensed bands and corrigendum 1. In IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005 (Amendment and Corrigendum to IEEE Std 802.16-2004) (pp. 0_1–822).Google Scholar
  3. 3.
    Andrews, J. G., Ghosh, A., & Muhamed, R. (2007). In Fundamentals of WiMAX: Understanding broadband wireless networking. Pearson Education.Google Scholar
  4. 4.
    Nuaymi, L. (2007). WiMAX: Technology for broadband wireless access. New York: Wiley.CrossRefGoogle Scholar
  5. 5.
    Li, G., & Liu, H. (2006). Downlink radio resource allocation for multi-cell OFDMA system. Wireless Communications, IEEE Transactions On, 5(12), 3451–3459.CrossRefGoogle Scholar
  6. 6.
    Pareit, D., Petrov, V., Lannoo, B., Tanghe, E., Joseph, W., Moerman, I., et al.(2010). A throughput analysis at the MAC layer of mobile WiMAX. In Wireless communications and networking conference (WCNC), 2010 IEEE (pp. 1–6). IEEE.Google Scholar
  7. 7.
    Korowajczuk, L. (2011). LTE, WIMAX and WLAN network design, optimization and performance analysis. New York: Wiley.CrossRefGoogle Scholar
  8. 8.
    Forum. (2006). In Mobile WiMAX—part I: A technical overview and performance evaluation (pp. 53).Google Scholar
  9. 9.
    Forum. (2006). In Mobile WIMAX—part II: A comparative analysis (pp. 47).Google Scholar
  10. 10.
    Forum. (2008). In WiMAX™ system evaluation methodology version 2.1 (pp. 209).Google Scholar
  11. 11.
    Einhaus, M., Mäder, A., & Pérez-Costa, X. (2010). A zone assignment algorithm for fractional frequency reuse in mobile WiMAX networks. NETWORKING 2010 (pp. 174–185). New York: Springer.CrossRefGoogle Scholar
  12. 12.
    Fu, W., Tao, Z., Zhang, J., & Agrawal, D. P. (2010). Clustering based fractional frequency reuse and fair resource allocation in multi-cell networks. In Communications (ICC), 2010 IEEE international conference on (pp. 1–5). IEEE.Google Scholar
  13. 13.
    Roy, JJJ., Roy, Jackson Juliet, & Vaidehi, V. (2011). Analysis of frequency reuse and throughput enhancement in WiMAX systems. Wireless Personal Communications, 61(1), 1–17.CrossRefGoogle Scholar
  14. 14.
    Mohades, Z., Tabataba Vakili, V., Razavizadeh, S. M., & Abbasi-Moghadam, D. (2012). Dynamic fractional frequency reuse (DFFR) with AMC and random access in WiMAX system. Wireless Personal Communications (pp. 1–11).Google Scholar
  15. 15.
    Stiakogiannakis, I. N., & Kaklamani, D. I. (2010). Fractional frequency reuse techniques for multi-cellular WiMAX networks. In IEEE 21st international symposium on personal indoor and mobile radio communications (PIMRC), 2010 (pp. 2432–2437). IEEE.Google Scholar
  16. 16.
    Stiakogiannakis, I. N., Athanasiadou, G. E., Tsoulos, G. V., & Kaklamani, D. I. (2012). Performance analysis of fractional frequency reuse for multi-cell WiMAX networks based on site-specific propagation modeling [wireless corner]. Antennas and Propagation Magazine, IEEE, 54(1), 214–226.CrossRefGoogle Scholar
  17. 17.
    Pijcke, B., Gazalet, M., Zwingelstein-Colin, M., & Coudoux, F.-X. (2013). An accurate performance analysis of an FFR scheme in the downlink of cellular systems under large-shadowing effect. EURASIP Journal on Wireless Communications and Networking, 2013(1), 1–14.CrossRefGoogle Scholar
  18. 18.
    Sankaran, C., Wang, F., & Ghosh, A. (2009). Performance of frequency selective scheduling and fractional frequency reuse schemes for WiMAX. In vehicular technology conference, 2009. VTC Spring 2009. IEEE 69th (pp. 1–5). IEEE.Google Scholar
  19. 19.
    So-In, C., Jain, R., & Al-Tamimi, A. K. (2010). Resource allocation in IEEE 802.16 mobile WiMAX. In T. Jiang, L. Song, Y. Zhang (Eds.), “Orthogonal Frequency Division Multiple Access (OFDMA). Auerbach Publications, CRC Press. ISBN: 1420088246.Google Scholar
  20. 20.
    IEEE-Std. (2009). IEEE standard for local and metropolitan area networks Part 16: Air interface for broadband wireless access systems. In IEEE Std 802.16-2009 (Revision of IEEE Std 802.16-2004) (pp. 1–2080).Google Scholar
  21. 21.
    Ahmadi, S. (2010). Mobile WiMAX: A systems approach to understanding IEEE 802.16 m radio access technology: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Computer and Communication EngineeringUniversity Malaysia Perlis (UniMAP)Kuala PerlisMalaysia
  2. 2.Ministry of Science and TechnologyBaghdadIraq
  3. 3.Regent University College of Science and TechnologyAccraGhana

Personalised recommendations