Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Service Enhancement for User Equipments in LTE-A Downlink Physical Layer Network

  • 132 Accesses

  • 4 Citations

Abstract

In this paper, we propose a real LTE-A downlink physical layer network with multiple relay stations (RSs). RSs improve the weak received signal at user equipments (UEs). LTE-A with RSs can be used to increase the coverage area of BSs and increase the system capacity. It also enhances the service of the user at cell edge and cover shadowed areas. The performance of the proposed LTE-A network is illustrated and modeled. We also take the effect of different environments scenarios of the WINNER Phase II channel model. The received signals of UEs scenarios are mathematically derived and analyzed in this paper. The weighted least square method for signal combining is mathematically analyzed. The performance of LTE-A with RSs is evaluated by calculating the SER and the capacity for a certain range of SNRs. The SER and capacity are calculated for different UEs scenarios to investigate the effect of RSs in LTE-A network. Simulation results reveal that UEs which receive multiple signals from RSs have low SER values for a certain range of SNRs and enhances the service performance of the UEs at cell edge.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). LTE-advanced: Next-generation wireless broadband technology. IEEE Wireless Communications, 17(3), 10–22.

  2. 2.

    Ghosh, A. M., Ratasuk, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). Lte-advanced: Next-generation wireless broadband technology. Invited Paper in IEEE Wireless Communications, 17(3), 10–22.

  3. 3.

    3GPP TS 36.201. (2009). Long term evolution (LTE) physical layer; general description. Release 8, V8.3.0.

  4. 4.

    Yang. Y., Hu, H., Xu, J., & Mao, G. (2009). Relay technologies for WiMAX and LTE-advanced mobile systems. IEEE Communications Magazine.

  5. 5.

    Beniero, T., Redana, S., Hamalainen, J., & Raaf, B. (2009). Effect of relaying on coverage in 3GPP LTE-advanced. In IEEE 69th vehicular technology conference. Barcelona: VTC Spring.

  6. 6.

    Jiang, D. M., Zhang, H. X., & Yuan, D. F. (2012). Joint precoding and power allocation for multiuser transmission in MIMO relay networks. International Journal of Communication Systems, 25(2), 205–220.

  7. 7.

    Baum, D. S., El-Sallabi, H., Jamsa, T., Meinila, J., Kyosti, P., Zhao, X., et al. (2005). Final report on link level and system level channel models. IST-2003-507581, WINNER D5.4 v. 1.4.

  8. 8.

    Boher, L., Legouable, R., & Rabineau, R. (2008). Performance analysis of iterative receiver in 3GPP/LTE DL MIMO OFDMA system. In Proceedings of IEEE 10th international symposium on spread spectrum techniques and applications (ISSSTA), pp. 103–108.

  9. 9.

    Technical Specification Group RAN, E-UTRA. (2009). Physical channels and modulation. 3GPP. Technical Report TS 36.211 version 8.7.0.

  10. 10.

    Technical Specification Group RAN, E-UTRA. (2009). Multiplexing and channel coding. 3GPP. Technical Report TS 36.212.

  11. 11.

    Technical Specification Group RAN, E-UTRA. (2009). Physical layer procedures. 3GPP. Technical Report TS 36.213.

  12. 12.

    Hafez, H., Fahmy, Y. A., & Khairy, M. M. (2013). LTE and WiMAX: performance and complexity comparison for possible channel estimation techniques. International Journal of Communication Systems, 26(6), 792–805.

  13. 13.

    Mehlfuhrer, C., Ikuno, J. C., Simko, M., Schwarz, S., Wrulich, M., & Rupp, M. (2011). The Vienna LTE simulators—Enabling reproducibility in wireless communications research. EURASIP Journal on Advances in Signal Processing.

  14. 14.

    Wong, C., Yeap, B., & Hanzo, L. (2000) Wideband burst-by-burst adaptive modulation with turbo equalization and iterative channel estimation. In Proceeding in vehicular technology conference, 2000 IEEE 51st VTC 2000-Spring Tokyo, Vol. 3, pp. 2044–2048.

  15. 15.

    Nimbalker, A. Blankenship, Y., Classon, B., & Blankenship, T. K. (2008) ARP and QPP interleavers for LTE turbo coding. In Proceedings IEEE wireless communications and networking conference 2008 (WCNC 2008), Las Vegas, NV, USA.

  16. 16.

    Lee, J., Han, J.-K., & Zhang, J. (2009) MIMO technologies in 3GPP LTE and LTE-advanced. EURASIP Journal on Wireless Communications and Networking. Article ID302092.

  17. 17.

    Gomez, G., Morales-Jimenez, D., Lopez-Martinez, F. J., Sanchez, J. J., & Entrambasaguas, J. T. (2009). Radio interface physical layer. In Long term evolution: 3GPP LTE radio and cellular technology. Chapter 3, pp. 49–98, Auerbach, Boca Raton, Fla, USA.

  18. 18.

    Sanchez, J. J., Morales-Jimenez, D., Gomez, G., & Enbrambasaguas, J. T. (2007). Physical layer performance of long term evolution cellular technology. In Proceedings of the 16th IST mobile and wireless communications summit.

  19. 19.

    Sesia, S., Toufik, I., & Baker, M. (2009). LTE: The UMTS long term evolution: from theory to practice. London: Wiley.

  20. 20.

    Morales-Jimenez, D., Gomez, G., Paris, J. F., & Entrambasaguas, J. T. (2009) Joint adaptive modulation and MIMO transmission for non-ideal OFDMA cellular systems. In Proceedings of the 5th IEEE broadband wireless access workshop colocated with IEEE GLOBECOM, Honolulu, Hawaii, USA.

  21. 21.

    Morales-Jimenez, D., Paris, J. F., & Entrambasaguas, J. T. (2009). Performance tradeoffs among low complexity detection algorithms for MIMO-LTE receivers. International Journal of Communication Systems, 22(7), 885–897.

  22. 22.

    Liu, T. H. (2013). Two efficient and stable MMSE detection algorithms for the V-BLAST system. International Journal of Communication Systems, 26(2), 236–249.

  23. 23.

    Ibing, A., & Jungnickel, V. (2008). Joint transmission and detection in hexagonal grid for 3GPP LTE. In Proceedings of international conference on information networking 2008. ICOIN 2008.

  24. 24.

    Ko, K., & Woo, C. (2012). Outage probability and channel capacity for the Nth best relay selection AF relaying over INID Rayleigh fading channels. International Journal of Communication Systems, 25(11), 1496–1504.

  25. 25.

    Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

  26. 26.

    Kyosti, P., Meinila, J., Hentila, L., Zhao, X., Jamsa, T., Schneider, C. et al. (2007). Part I: Channel models, IST-4-027756, WINNER II D1.1.2 V1.1, WINNER II channel models.

  27. 27.

    Qureshi, A., Balasubramanyam, R., & Rapajic, P. (2010) Signal combining by weighted least square error method, Vol. 11, IJSSST, UK.

  28. 28.

    Tico, M., & Kuosmanen, P. (2001) Weighted least square method of the approximation of directional direvative. In IEEE international conference acoustics, speech and signal processing, Vol. 3, Salt Lake City, UT, USA.

  29. 29.

    Calhoun, V., Adali, T., Kraut, M., Pearlson, G. (2000) A weighted least squares algorithm for estimation and visualization of relative latencies in event related functional MRI. Issue 44–6, pp. 947–954, US NLM.

  30. 30.

    Cho, Y. S., Kim, J., Yang, W. Y., & Kang, C. G. (2010). MIMO-OFDM wireless communications with MATLAB. Lodon: Wiley.

  31. 31.

    Paulraj, A., Nabar, R., & Gore, D. (2003). Introduction to space-time wireless communications (1st ed.). Cambridge: Cambridge University Press.

Download references

Author information

Correspondence to Mohamed G. El-Mashed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Mashed, M.G., El-Rabaie, S. Service Enhancement for User Equipments in LTE-A Downlink Physical Layer Network. Wireless Pers Commun 83, 149–161 (2015). https://doi.org/10.1007/s11277-015-2385-3

Download citation

Keywords

  • Relay stations
  • LTE-A
  • WINNER
  • Weighted least square and SER