Advertisement

Wireless Personal Communications

, Volume 82, Issue 4, pp 2363–2375 | Cite as

DOA Estimation of Noncircular Signal Based on Sparse Representation

  • Xuemin YangEmail author
  • Guangjun Li
  • Zhi Zheng
Article

Abstract

In this paper, we propose a novel method employing subspace fitting principle for DOA estimation of noncircular signal based on the sparse representation technology. The proposed method combines the signal information contained in both the covariance and elliptic covariance matrix of the received data matrix. We use the eigenvalue decomposition of the extended covariance to obtain the signal eigenvectors, and represent the steering vector on overcomplete basis subject to sparse constraint in subspace fitting method. After casting multiple dimensional optimization problem of the classical subspace fitting method as a sparse reconstruction problem, we use L1-norm penalty for sparsity, and optimization by the second order cone programming framework to obtain the DOA estimates. The proposed method can be used in arbitrary array configuration. Compared with the existing algorithms, the simulation results show that the proposed method has better performance in low SNR. Compared with L1-SVD, the proposed method also own better resolution probability.

Keywords

DOA estimation Noncircular signal Sparse representation Subspace fitting 

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China under Grant No. 61301155 and 61176025, and the Fundamental Research Funds for the Central Universities Project No. ZYGX2012J003, for which the authors would like to express their thanks. The authors also wish to thank the anonymous reviewers for their helpful and constructive comments and suggestions.

References

  1. 1.
    Barabell, A. J. (1983). Improving the resolution performance of eigenstructure-based direction-finding algorithms. ICASSP, 8, 336–339.Google Scholar
  2. 2.
    Rao, B. D., & Hari, K. V. (1989). Performance analysis of Root-MUSIC. IEEE Transaction on Acoustics, Speech and Signal Processing, 37(12), 1939–1949.Google Scholar
  3. 3.
    Ren, Q. S., & Willis, A. J. (1997). Fast Root-MUSIC algorithm. IEE Electronics Letters, 33(6), 450–451.CrossRefGoogle Scholar
  4. 4.
    Roy, R., Paulraj, A., & Kailath, T. (1989). ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transaction on Acoustics, Speech and Signal Processing, 37, 984–995.CrossRefGoogle Scholar
  5. 5.
    Shahbazpanahi, S., & Valaee, S. (2001). Distributed source localization using ESPRIT algorithm. IEEE Transaction on Signal Processing, 49, 2169–2178.CrossRefGoogle Scholar
  6. 6.
    Ottersten, B., & Viberg, M. (1991). Sensor array processing based on subspace fitting IEEE Transaction on. Signal Processing, 39(5), 1110–1121.zbMATHGoogle Scholar
  7. 7.
    Malioutov, D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transaction on Signal Processing, 53(8), 3010–3022.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hyder, M. M., & Mahata, K. (2010). Direction-of-arrival estimation using a mixed L2,0 norm approximation. IEEE Transaction on Signal Processing, 58(9), 4646–4655.CrossRefMathSciNetGoogle Scholar
  9. 9.
    He, Z. Q., Liu, Q. H., Jin, L. N., et al. (2013). Low complexity method for DOA estimation using array covariance matrix sparse representation. Electronics Letters, 49(3), 228–230.CrossRefGoogle Scholar
  10. 10.
    Stoica, P., Babu, P., & Li, J. (2011). SPICE: A sparse covariance-based estimation method for array processing. IEEE Transaction on Signal Processing, 59(2), 629–638.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Abeida, H., Zhang, Q., Li, J., et al. (2013). Iterative sparse asymptotic minimum variance based approaches for array processing. IEEE Transaction on Signal Processing, 61(4), 933–944.CrossRefGoogle Scholar
  12. 12.
    Gounon, P., Adnet, C., & Galy, J. (1998). Localization angulaire de signaux non circulaires. Traitement du Signal, 15(1), 17–23. 1998.zbMATHGoogle Scholar
  13. 13.
    Chlarge, P., Wang, Y., & Saillard, J. (2001). A Root-MUSIC algorithm for non circular sources, In IEEE international conference acoustics, speech, and signal processing (pp. 7–11). Salt Lake City, UT.Google Scholar
  14. 14.
    Chlarge, P., Wang, Y., & Saillard, J. (2001). A non-circular sources direction finding method using polynomial rooting. Signal Processing, 81, 1765–1770.CrossRefGoogle Scholar
  15. 15.
    Abeida, H., & Delmas, J. (2006). MUSIC-like estimation of direction of arrival for noncircular sources. IEEE Transaction on Signal Processing, 54(7), 2678–2690.CrossRefGoogle Scholar
  16. 16.
    Gao, F., Wang, Y., & Nallanathan, A. (2006). Improved MUSIC by exploiting both real and complex sources. Washington, DC: MILCOM.CrossRefGoogle Scholar
  17. 17.
    Zoubir, A., Charge, P., & Wang, Y. (2003). Non circular sources localization with ESPRIT. In Proceedings of European conference on wireless technology (ECWT 2003). Munich, Germany.Google Scholar
  18. 18.
    Liu, Z., Huang, Z., Zhou, Y., et al. (2012). Direction-of-arrival estimation of noncircular signals via sparse representation. IEEE Transactions on Aerospace and Electronic Systems, 48(3), 2690–2698.CrossRefMathSciNetGoogle Scholar
  19. 19.
    Wong, K. M., Reilly, J. P., Wu, Q., et al. (1992). Estimation of the directions of arrival of signals in unknown correlated noise. I. The MAP approach and its implementation. IEEE Transaction on Signal Processing, 40(8), 2007–2017.CrossRefzbMATHGoogle Scholar
  20. 20.
    Stoica, P., & Sharman, K. C. (1990). Novel eigenanalysis method for direction estimation. IEE Proceedings F (Radar and Signal Processing), 137(1), 19–26.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Steiglitz, K., & McBride, L. (1965). A technique for identification of linear system. IEEE Transaction on Automatic Control, 10(4), 461–464.CrossRefGoogle Scholar
  22. 22.
    Cadzow, J. A. (1990). Multiple source location-the signal subspace approach. IEEE Transaction on Acoustics, Speech and Signal Processing, 38(7), 1110–1125.CrossRefGoogle Scholar
  23. 23.
    Tropp, J. A., & Wright, S. J. (2010). Computational methods for sparse solution of linear inverse problems. Proceedings of the IEEE., 98(6), 948–958.CrossRefGoogle Scholar
  24. 24.
    Grant, M., & Boyd, S. (2010). CVX: MATLAB software for disciplined convex programming. Online available: http://cvxr.com/cvx.
  25. 25.
    Sturm, J. S. (2010). Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Online available: http://fewcal.kub.nl/strum
  26. 26.
    Jeffries, D. J., & Farrier, D. R. (1985). Asymptotic results for eigenvector methods. IEE Proceedings F (Communications, Radar and Signal Processing), 132(7), 589–594.Google Scholar
  27. 27.
    Viberg, M., Ottersten, B., & Kailath, T. (1991). Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Transaction on Signal Processing, 39(11), 2436–2449.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Communication and Information EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations