Wireless Personal Communications

, Volume 82, Issue 1, pp 451–472 | Cite as

Modelling Mobility Based on Obstacle-Aware Human Behaviour in Disaster Areas



Mobility models are used to mimic the realistic movement of entities. Mobility models for wireless networks feature different objectives and characteristics, most based on random behaviour. However, random based mobility models, such as the random waypoint, are often not suitable to represent the reality of node mobility, particularly in disaster areas where the search time for victims is a critical factor. This work studies the main existent mobility models able to suit disaster environments, according to specifically identified requirements. Moreover, a formal specification of the human behaviour for disaster areas (HBDA) mobility model is presented and an obstacle avoidance mechanism is introduced. Obstacle-aware HBDA is evaluated and compared with two existent mobility models, regarding its movement and network performances in different types of scenarios with variable network size and obstacle density. Obtained results show that obstacle-aware HBDA provides an even distribution of nodes, a efficient area coverage and a good transmission rate.


Mobile wireless networks Mobility model Disaster scenarios Obstacles 



This work was partially supported by the Portuguese Foundation for Science and Technology (FCT) under a Ph.D. Scholarship (SFRH/BD/81829/2011) and the by the iCIS Project (CENTRO-07- ST24-FEDER-002003), co-financed by QREN, in the scope of the Mais Centro Program and European Unions FEDER. The authors would like to thank the Riverbed Modeler University Program for the licenses provided for the OPNET Modeler Wireless Suite R.


  1. 1.
    Bai, F., Sadagopan, N., & Helmy, A. (2003). In INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications. IEEE societies (Vol. 2, pp. 825–835). doi:10.1109/INFCOM.2003.1208920.
  2. 2.
    Johnson, D., & Maltz, D. (1996) Mobile computing. In T. Imielinski, & H. Korth (Eds.), The Kluwer international series in engineering and computer science (Vol. 353, pp. 153–181). USA: Springer. doi:10.1007/978-0-585-29603-6_5.
  3. 3.
    Broch, J., Maltz, D. A., Johnson, D. B., Hu, Y. C., & Jetcheva, J. (1998). In Proceedings of the 4th annual ACM/IEEE international conference on mobile computing and networking, MobiCom ’98 (pp. 85–97). ACM, New York, NY, USA, 1998. doi:10.1145/288235.288256.
  4. 4.
    Bettstetter, C., & Wagner, C. (2002). In Mobile ad-hoc Netzwerke, 1. Deutscher Workshop U̇Ber Mobile Ad-Hoc Netzwerke WMAN 2002 (GI, 2002) (pp. 41–58).Google Scholar
  5. 5.
    Lim, S., Yu, C., & Das, C. (2006). In Proceedings 2006 31st IEEE conference on local computer networks (pp. 231–238). doi:10.1109/LCN.2006.322105.
  6. 6.
    Hong, X., Gerla, M., Pei, G., & Chiang, C. C. (1999). In Proceedings of the 2nd ACM international workshop on modeling, analysis and simulation of wireless and mobile systems, MSWiM ’99 (pp. 53–60). ACM, New York, NY, USA, 1999. doi:10.1145/313237.313248.
  7. 7.
    Sánchez, M., & Manzoni, P. (2001). I: Best of Websim99. II: Traffic simulation. Future Generation Computer Systems, 17(5), 573. doi:10.1016/S0167-739X(00)00040-6.CrossRefGoogle Scholar
  8. 8.
    Aschenbruck, N., Gerhards-Padilla, E., & Martini, P. (2009). Performance evaluation of wireless ad hoc, sensor and ubiquitous networks. Performance Evaluation, 66(12), 773. doi:10.1016/j.peva.2009.07.009.CrossRefGoogle Scholar
  9. 9.
    Pomportes, S., Tomasik, J., & Veque, V. (2010). In 2010 International conference on advanced technologies for communications (ATC) (pp. 17–22). doi:10.1109/ATC.2010.5672729.
  10. 10.
    Conceição, L., & Curado, M. (2013). Wired/wireless internet communication. In V. Tsaoussidis, A. Kassler, Y. Koucheryavy, & A. Mellouk (Eds.), Lecture Notes in Computer Science (Vol. 7889, pp. 56–69). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-38401-1_5.
  11. 11.
    Kumar, S., Sharma, S. C., & Suman, B. (2010). Mobility metrics based classification & analysis of mobility model for tactical network. International Journal of Next-Generation Networks, 2(3), 39. doi:10.5121/ijngn.2010.2305.CrossRefGoogle Scholar
  12. 12.
    Bettstetter, C., Resta, G., & Santi, P. (2003). The node distribution of the random waypoint mobility model for wireless ad hoc networks. IEEE Transactions on Mobile Computing, 2(3), 257. doi:10.1109/TMC.2003.1233531.CrossRefGoogle Scholar
  13. 13.
    Wang, T., & Low, C. P. (2013). Evaluating inter-arrival time in general random waypoint mobility model. Ad Hoc Networks, 11(1), 124. doi:10.1016/j.adhoc.2012.04.011.CrossRefGoogle Scholar
  14. 14.
    Rhee, I., Shin, M., Hong, S., Lee, K., & Chong, S. (2008). 2008 IEEE INFOCOM: The 27th conference on computer communications (pp. 924–932). doi:10.1109/INFOCOM.2008.145.
  15. 15.
    Misra, S., & Agarwal, P. (2011). Bio-inspired group mobility model for mobile ad hoc networks based on bird-flocking behavior. Soft Computing, 16(3), 437. doi:10.1007/s00500-011-0728-x.CrossRefGoogle Scholar
  16. 16.
    Merkel, S., Mostaghim, S., & Schmeck, H. (2012). In 2012 5th International conference on new technologies, mobility and security (NTMS) (IEEE, 2012) (pp. 1–5). doi:10.1109/NTMS.2012.6208681.
  17. 17.
    LaValle, S. (2011). Motion planning. IEEE Robotics Automation Magazine, 18(1), 79. doi:10.1109/MRA.2011.940276.CrossRefMathSciNetGoogle Scholar
  18. 18.
    OPNET TECHNOLOGIES INC. (Bethesda USA). Opnet: Making networks and applications perform (1986). http://www.opnet.com/.
  19. 19.
    Jacquet, P., Muhlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., & Viennot, L., (2001). In Multi topic conference, 2001. IEEE INMIC 2001. Technology for the 21st century. Proceedings. IEEE International (2001) (pp. 62–68). doi:10.1109/INMIC.2001.995315.
  20. 20.
    Kleiner, A., Dornhege, C., & Dali, S. (2007). In 2007 IEEE international workshop on safety, security and rescue robotics (IEEE, 2007) (pp. 1–6). doi:10.1109/SSRR.2007.4381263.
  21. 21.
    Bettstetter, C. (2002). In Proceedings of the 3rd ACM international symposium on Mobile ad hoc networking & computing: MobiHoc ’02 (p. 80). ACM Press, New York, New York, USA, 2002. doi:10.1145/513800.513811.
  22. 22.
    Jerew, O. D., Jones, H. M., & Blackmore, K. L. (2009). In 2009 IEEE 6th international conference on mobile adhoc and sensor systems (IEEE, 2009) (pp. 573–582). doi:10.1109/MOBHOC.2009.5336952.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Informatics Engineering, Centre for Informatics and SystemsUniversity of CoimbraCoimbraPortugal

Personalised recommendations