Wireless Personal Communications

, Volume 80, Issue 3, pp 1159–1173 | Cite as

Multi-band Strategy for Cooperative Communication Networking with Unmatched Carrier Frequencies

  • Yongfeng Guan
  • Tao XuEmail author
  • Wei Ding
  • Hao Lu


In this paper, we consider the cooperative networking with the presence of multiple carrier frequency offsets at different relays, which is difficult to be handled. Such an imperfect networking is inevitable due to the distributed nature of the relay system and unmatched central frequencies at different relays. We propose a multi-band scheme for cooperative communications and provide theoretical analysis of the proposed cooperative networking based on the analytical upper bound of the channel orthogonality deficiency. Theoretical analysis and simulation results show that the proposed scheme achieves the full cooperative diversity and improves the system capacity, only adopting linear equalizers such as zero-forcing and minimum mean square error equalizers. Such advatange is normlly only enjoyed by a non-linear equalizers like maximum-likelihood equalizer, whose huge complexity is however usually unacceptable.


Cooperative networks Carrier frequency offset Linear equalizer Multi-band strategy 



This work is performed in part at Tianjin 712 Communication & Broadcasting Corp under the University–Enterprise Joint Postdoctoral program between Tsinghua University and Tianjin Zhonghuan Electronic & Information (Group) Co., Ltd. and supported in part by National Natural Science Foundation of China (NSFC, Project 61302140).


  1. 1.
    Liu, K. J. R., Sadek, A. K., Su, W., & Kwasinski, A. (2009). Cooperative communications and networks. Cambridge: Cambridge University Press.Google Scholar
  2. 2.
    Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42, 74–80.CrossRefGoogle Scholar
  3. 3.
    Cover, T. M., & El Gamal, A. A. (1979). Capacity theorems for the relay channel. IEEE Transactions on Information Theory, IT–25, 572–584.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Kramer, G., Gastpar, M., & Gupta, P. (2005). Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, 51, 3037–3063.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.CrossRefGoogle Scholar
  7. 7.
    Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part II: Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.CrossRefGoogle Scholar
  8. 8.
    Letaief, K. B., & Zhang, W. (2009). Cooperative communications for cognitive radio networks. Proceedings of IEEE, 97, 878–893.CrossRefGoogle Scholar
  9. 9.
    Oyman, O., Laneman, J. N., & Sandhu, S. (2007). Multihop relaying for broadband wireless mesh networks: From theory to practice. IEEE Communications Magazine, 45, 116–122.CrossRefGoogle Scholar
  10. 10.
    Salim, O., Nasir, A., Xiang, W., & Kennedy, R. (2014). Joint channel, phase noise, and carrier frequency offset estimation in cooperative OFDM systems. In Proceedings of the IEEE ICC’14, Sydney, Australia.Google Scholar
  11. 11.
    Batra, A. (2004). Design of a multiband OFDM system for realistic UWB channel environments. IEEE Transactions on Microwave Theory and Techniques, 52, 2123–2138.CrossRefGoogle Scholar
  12. 12.
    Batra, A. (Sept. 2004). Multi-band OFDM physical layer proposal for IEEE 802.15Task Group 3a IEEE P802.15-04/0493r1.Google Scholar
  13. 13.
    Standard ECMA-368 high rate ultra wideband PHY and MAC Standard, 3rd ed., Dec. 2008.Google Scholar
  14. 14.
    Hassibi, B., & Vikalo, H. (2005). On the sphere-decoding algorithm I. Expected complexity. IEEE Transactions on Signal Processing, 53(8), 2806–2818.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Giannakis, G. B., Liu, Z., Ma, X., & Zhou, S. (2007). Space-time coding for broadband wireless communications. New York: Wiley.Google Scholar
  16. 16.
    Su, W., Safar, Z., & Liu, K. J. R. (2005). Towards maximum achievable diversity in space, time, and frequency: Performance analysis and code design. IEEE Transactions on Wireless Communications, 4(4), 1847–1857.CrossRefGoogle Scholar
  17. 17.
    Su, W., Safar, Z., & Liu, K. J. R. (2005). Full-rate full-diversity space-frequency codes with optimum coding advantage. IEEE Transactions on Information Theory, 51(1), 229–249.CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Zhang, W., & Letaief, K. B. (2007). Space-time/frequency coding for MIMO-OFDM in next generation broadband wireless systems. IEEE Wireless Communications Magazine, 14(3), 32–43.CrossRefGoogle Scholar
  19. 19.
    Ma, X., & Giannakis, G. B. (2005). Space-time-multipath coding using digital phase sweeping or block circular delay diversity. IEEE Transactions on Signal Processing, 53(3), 1121–1131.CrossRefMathSciNetGoogle Scholar
  20. 20.
    Fang, K., & Leus, G. (2010). Space-time block coding for doubly-selective channels. IEEE Transactions on Signal Processing, 58(3), 1934–1940.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Ma, X., & Zhang, W. (2008). Fundamental limits of linear equalizers: Diversity, capacity, and complexity. IEEE Transactions on Information Theory, 54(8), 3442–3456.CrossRefzbMATHGoogle Scholar
  22. 22.
    Zhang, W., Ma, X., Gestner, B., & Anderson, D. V. (2009). Designing low-complexity equalizers for wireless systems. IEEE Communications Magazine, 47(1), 56–64.CrossRefGoogle Scholar
  23. 23.
    Lu, H., Nikookar, H., & Lian, X. (2010). Performance evaluation of hybrid DF-AF OFDM cooperation in Rayleigh channel. In Proceedings of the wireless technology conference (EuWIT).Google Scholar
  24. 24.
    Sanna, M., & Murroni, M. (2011). Optimization of non-convex multiband cooperative sensing with genetic algorithms. IEEE Selected Topics in Signal Processing, 5(1), 87–96.CrossRefGoogle Scholar
  25. 25.
    Song, Z., Zhou, Z., Sun, X., & Qin, Z. (2010). Cooperative spectrum sensing for multiband under noise uncertainty in cognitive radio networks. In Proceedings of the IEEE ICC’10, South Africa .Google Scholar
  26. 26.
    Lu, H., Xu, T., & Nikookar, H. (2010). Performance analysis of the STFC for cooperative ZP-OFDM diversity, capacity and complexity. In Proceedings of the WPMC’10, 11–14 Oct. 2011, Recife, Brazil.Google Scholar
  27. 27.
    Zhang, J.K., Liu, J., & Wong, K.M. (Sept. 2005). Linear Toeplitz space time block codes. In Proceedings of the IEEE ISIT’05, Adelaide, Australia.Google Scholar
  28. 28.
    Shang, Y., & Xia, X. G. (2008). On space-time block codes achieving full diversity with linear receivers. IEEE Transactions on Information Theory, 54, 4528–4547.CrossRefMathSciNetGoogle Scholar
  29. 29.
    Wang, H., Xia, X. G., & Yin, Q. (2009). Distributed space-frequency codes for cooperative communication system with multiple carrier frequency offsets. IEEE Transactions on Wireless Communication, 8, 1045–1055.CrossRefGoogle Scholar
  30. 30.
    Avestimehr, A. S., & Tse, D. N. C. (2007). Outage capacity of the fading relay channel in the low-SNR regime. IEEE Transactions on Information Theory, 53(4), 1401–1415.CrossRefMathSciNetGoogle Scholar
  31. 31.
    Telatar, I. E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10(6), 585–595.CrossRefGoogle Scholar
  32. 32.
    Pammer, V., Delignon, Y., Sawaya, W., & Boulinguez, D. (2003). A low complexity suboptimal MIMO receiver: The combined ZF-MLD algorithm. In Proceedings of the personal, indoor and mobile radio communications (Vol. 3, pp, 2271–2275), Beijing, China.Google Scholar
  33. 33.
    Windpassinger, C., Lampe, L., Fischer, R. F. H., & Hehn, T. (2006). A performance study of MIMO detectors. IEEE Transactions on Wireless Communications, 5(8), 2004–2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.National University of Defence TechnologyChangshaChina
  2. 2.Tianjin 712 Communication & Broadcasting CorpTianjinChina
  3. 3.Tsinghua UniversityBeijingChina
  4. 4.China Defense Science and Technology Information CenterBeijingChina
  5. 5.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations