Advertisement

Wireless Personal Communications

, Volume 79, Issue 3, pp 1925–1940 | Cite as

PAPR Reduction in MIMO-OFDM Systems: Spatial and Temporal Processing

  • Bashir Reza KarimiEmail author
  • Mojtaba Beheshti
  • Mohammad Javad Omidi
Article

Abstract

Multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) technology is a promising solution for next generation wireless communications, due to high bandwidth efficiency, resistance to RF interference, and robustness to multipath fading. A major drawback of OFDM is its high peak-to-average power ratio (PAPR) which results in non-linearities in the output signal. In this paper, two methods based on spatial/temporal processing are proposed to reduce the PAPR of MIMO-OFDM systems. These methods divide the OFDM block at each transmit antenna into some subblocks. Then, spatial and temporal processing in the form of circular shifting or interleaving are applied to generate different candidate sequences. Finally, for each transmit antenna the candidate sequence with the lowest PAPR is chosen for transmission. Compared to the conventional PAPR reduction schemes such as ordinary partial transmit sequences (O-PTS), the proposed methods require lower computational complexity and have superior PAPR reduction performance.

Keywords

Multiple-input multiple-output (MIMO) Orthogonal frequency division multiplexing (OFDM) Peak-to-average power ratio (PAPR) Spatial and temporal processing 

References

  1. 1.
    Weinstein, S., & Ebert, P. (1971). Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Transactions on Communication Technology, 19(5), 628–634.CrossRefGoogle Scholar
  2. 2.
    Wu, Y., & Zou, W. Y. (1995). Orthogonal frequency division multiplexing: A multi-carrier modulation scheme. IEEE Transactions on Broadcasting, 41(3), 392–399.Google Scholar
  3. 3.
    Nee, R. V., & Prasad, R. (2000). OFDM for wireless multimedia communications. Artech House.Google Scholar
  4. 4.
    Fazel, Kh, & Kaiser, S. (2008). Multi-carrier and spread spectrum systems: from OFDM and MC-CDMA to LTE and WiMAX. UK: Wiley.CrossRefGoogle Scholar
  5. 5.
    Wang, T., Yang, Ch., Wu, G., Li, Sh, & Li, G. Y. (2009). OFDM and its wireless applications: A survey. IEEE Transactions on Vehicular Technology, 58(4), 1673–1694.CrossRefGoogle Scholar
  6. 6.
    Hanzo, L., Akhtman, Y., Wang, L., & Jiang, M. (2011). MIMO-OFDM for LTE, WiFi and WiMAX: Coherent versus non-coherent and cooperative turbo transceivers. UK: Wiley.Google Scholar
  7. 7.
    Tarokh, V., & Jafarkhani, H. (2000). On the computation and reduction of the peak-to-average power ratio in multicarrier communications. IEEE Transactions on Communications, 48(1), 37–44.CrossRefMathSciNetGoogle Scholar
  8. 8.
    O’Neill, R., & Lopes, L. B. (1995). Envelope variations and spectral splatter in clipped multicarrier signals. In Proceedings of IEEE PIMRC, Toronto, Canada, pp. 71–75.Google Scholar
  9. 9.
    Armstrong, J. (2002). Peak-to-average power reduction for OFDM by repeated clipping and frequency domain ltering. IEEE Electronics Letters, 38(5), 246–247.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Omidi, M. J., Minasian, A., Saeedi-Sourck, H., Kasiri, K., & Hosseini, I. (2013). PAPR reduction in OFDM systems: Polynomial-based compressing and iterative expanding. Wireless Personal Communications. doi: 10.1007/s11277-013-1350-2.
  11. 11.
    Jiang, T., & Zhu, G. (2005). Complement block coding for reduction in peak-to-average power ratio of OFDM signals. IEEE Communications Magazine, 43(9), 57–65.Google Scholar
  12. 12.
    Borjesson, P. O., Feichtinger, H. G., Grip, N., Isaksson, M., Kaiblinger, N., Odling, P., et al. (1999). A low-complexity PAPR-reduction method for DMT-VDSL. In Proceeding of the 5th international symposium on digital signal processing for communication systems (pp. 164–199), Australia.Google Scholar
  13. 13.
    Tellado, J., & Cio, J. M. (1998). PAPR reduction with minimal or zero bandwidth loss and low complexity. ANSI document, T1E1.4 Technical Subcommittee.Google Scholar
  14. 14.
    Krongold, B. S., & Jones, D. L. (2003). PAR reduction in OFDM via active constellation extension. IEEE Transactions on Broadcasting, 49(3), 258–268.CrossRefGoogle Scholar
  15. 15.
    Ho, W. S., Madhukumar, W. S., & Chin, F. (2003). Peak-to-average power reduction using partial transmit sequences: A suboptimal approach based on dual layered phase sequencing. IEEE Transactions on Broadcasting, 49(2), 225–231.CrossRefGoogle Scholar
  16. 16.
    Han, S. H., & Lee, J. H. (2004). Modied selected mapping technique for PAPR reduction of coded OFDM signal. IEEE Transactions on Broadcasting, 50(3), 335–341.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Jayalath, A. D. S., & Tellambura, C. (2000). Reducing the peak-to-average power ratio of orthogonal frequency division multiplexing signal through bit or symbol interleaving. IEEE Electronics Letters, 36(13), 1161–1163.CrossRefGoogle Scholar
  18. 18.
    Lee, Y. L., You, Y. H., Jeon, W. G., Paik, J. H., & Song, H. K. (2003). Peak-to-average power ratio in MIMO-OFDM systems using selective mapping. IEEE Communications Letters, 7(12), 575–577.CrossRefGoogle Scholar
  19. 19.
    Baek, M. S., Kim, M. J., You, Y. H., & Song, H. K. (2004). Semi-blind channel estimation and PAR reduction for MIMO-OFDM system with multiple antennas. IEEE Transactions on Broadcasting, 50(4), 414–424.CrossRefGoogle Scholar
  20. 20.
    Latinovic, Z., & Bar-Ness, Y. (2006). SFBC MIMO-OFDM peak-to-average power ratio reduction by polyphase interleaving and inversion. IEEE Communications Letters, 10(4), 266–268.CrossRefGoogle Scholar
  21. 21.
    Jiang, T., & Li, C. (2012). Simple alternative multisequences for PAPR reduction without side information in SFBC MIMO-OFDM systems. IEEE Transactions on Vehicular Technology, 61(7), 3311–3315.CrossRefGoogle Scholar
  22. 22.
    Joo, H. S., No, J. S., & Shin, D. J. (2010). A blind SLM PAPR reduction scheme using cyclic shift in STBC MIMO-OFDM system. In International conference on information and communication technology convergence (ICTC) (pp. 272–273), South Korea.Google Scholar
  23. 23.
    Siegl, C., & Fischer, R. F. H. (2008). Partial transmit sequences for peak-to-average power ratio reduction in multiantenna OFDM. EURASIP Journal on Wireless Communications and Networking, Article ID:325829.Google Scholar
  24. 24.
    Jayalath, A. D. S., Tellambura, C., & Wu, H. (2000). Reduced complexity PTS and new phase sequences for SLM to reduce PAPR of an OFDM signal. In Vehicular technology conference proceedings (pp. 1914–1917), Tokyo.Google Scholar
  25. 25.
    Tellambura, C. (2001). Computation of the continuous-time PAR of an OFDM signal with BPSK subcarriers. IEEE Communications Letters, 5(5), 185–187.CrossRefGoogle Scholar
  26. 26.
    Yang, L., Soo, K. K., Li, S. Q., & Siu, Y. M. (2011). PAPR reduction using low complexity PTS to construct of OFDM signals without side information. IEEE Transactions on Broadcasting, 57(2), 284–290.CrossRefGoogle Scholar
  27. 27.
    Wang, L., & Liu, J. (2011). Cooperative PTS for PAPR reduction in MIMO-OFDM. IEEE Electronics Letters, 47(5), 472–474.Google Scholar
  28. 28.
    Gardner, S. (2001). The HomePlug standard for powerline home networking. In ISPL2001 Proceedings of the 5th international symposium on power-line communications and its applications, pp. 15–22.Google Scholar
  29. 29.
    Jiang, T., & Wu, Y. (2008). An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Transactions on Broadcasting, 54(2), 257–268.CrossRefGoogle Scholar
  30. 30.
    Hussain, S. (2009). Peak-to-average power ratio analysis and reduction of cognitive radio signals. PhD Thesis, University of Rennes, France.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Bashir Reza Karimi
    • 1
    Email author
  • Mojtaba Beheshti
    • 2
  • Mohammad Javad Omidi
    • 1
  1. 1.Department of Electrical and Computer EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Information and Communication Technology InstituteIsfahan University of TechnologyIsfahanIran

Personalised recommendations