Wireless Personal Communications

, Volume 78, Issue 3, pp 1789–1810 | Cite as

Combination of Multiple Measurement Cues for Visual Face Tracking

  • Nikolaos Katsarakis
  • Aristodemos Pnevmatikakis
  • Zheng-Hua Tan
  • Ramjee Prasad


Visual face tracking is an important building block for all intelligent living and working spaces, as it is able to locate persons without any human intervention or the need for the users to carry sensors on themselves. In this paper we present a novel face tracking system built on a particle filtering framework that facilitates the use of non-linear visual measurements on the facial area. We concentrate on three different such non-linear visual measurement cues, namely object detection, foreground segmentation and colour matching. We derive robust measurement likelihoods under a unified representation scheme and fuse them into our face tracking algorithm. This algorithm is complemented with optimum selection of the particle filter’s object model and a target handling scheme. The resulting face tracking system is extensively evaluated and compared to baseline ones.


Face tracking Visual measurements Particle filters Likelihood function Fusion 


  1. 1.
    Arulampalam, S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188.CrossRefGoogle Scholar
  2. 2.
    Babenko, B., Yang, M. H., & Belongie, S. (2009). Visual tracking with online multiple instance learning. In IEEE conference on computer vision and pattern recognition (CVPR, 2009). Miami Beach, FL, USA.Google Scholar
  3. 3.
    Bernardin, K., Stiefelhagen, R., Pnevmatikakis, A., Lanz, O., Brutti, A., Casas, J. R., et al. (2009). Person tracking. In A. Waibel & R. Stiefelhagen (Eds.), Computers in the human interaction loop, human–computer interaction (pp. 11–22). New York: Springer.CrossRefGoogle Scholar
  4. 4.
    Blackman, S., & Popoli, R. (1999). Design and analysis of modern tracking systems. Artech House radar library. Northwood: Artech House.Google Scholar
  5. 5.
    Bradski, G., Kaehler, A., & Pisarevsky, V. (2005). Learning-based computer vision with intel’s open source computer vision library.Google Scholar
  6. 6.
    Buehren, M. (2011). Functions for the rectangular assignment problem.
  7. 7.
    CHIL (computer in the human interaction loop) EU FP6 integrated project. (2004).
  8. 8.
    Ding, X., Xu, H., Cui, P., Sun, L., & Yang, S. (2009). A cascade svm approach for head-shoulder detection using histograms of oriented gradients. In IEEE international symposium on circuits and systems (ISCAS 2009). Taipei, Taiwan, pp. 1791–1794.Google Scholar
  9. 9.
    HERMES (cognitive care and guidance for active ageing) EU FP7 specific targeted research project. (2007).
  10. 10.
    Jaffré, G., & Crouzil, A. (2003). Non-rigid object localization from color model using mean shift. In IEEE International conference on image processing (ICIP 2003), Barcelona, Spain, pp. 317–320.Google Scholar
  11. 11.
    Jones, M. J., & Rehg, J. M. (2002). Statistical color models with application to skin detection. International Journal of Computer Vision, 46(1), 81–96.CrossRefzbMATHGoogle Scholar
  12. 12.
    Kitagawa, G. (1996). Monte carlo filter and smoother for non-gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5(1), 1–25.MathSciNetGoogle Scholar
  13. 13.
    Patrikakis, C., Pnevmatikakis, A., Chippendale, P., Nunes, M., Santos Cruz, R., Poslad, S., et al. (2010). Direct your personal coverage of large athletic events. In IEEE multimedia. doi: 10.1109/MMUL.2010.69.
  14. 14.
    Perez, P., Vermaak, J., & Blake, A. (2004). Data fusion for visual tracking with particles. Proceedings of IEEE, 92(3), 495–513.CrossRefGoogle Scholar
  15. 15.
    Pnevmatikakis, A., & Polymenakos, L. (2006). Robust estimation of background for fixed cameras. In 15th International conference on computing (CIC ’06). Mexico City, Mexico, pp. 37–42.Google Scholar
  16. 16.
    Stauffer, C., & Grimson, W. E. L. (2000). Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 747–757.CrossRefGoogle Scholar
  17. 17.
    Viola, P. A., & Jones, M. J. (2001). Rapid object detection using a boosted cascade of simple features. In IEEE computer society conference on computer vision and pattern recognition (CVPR 2001). Kauai, HI, USA, pp. 511–518.Google Scholar
  18. 18.
    Waibel, A., Steusloff, H., & Stiefelhagen, R. (2004). CHIL: Computers in the human interaction loop. In 5th International workshop on image analysis for multimedia interactive services. Lisboa, Portugal, pp. 175–178.Google Scholar
  19. 19.
    Xu, L., Landabaso, J., & Pardas, M. (2005). Shadow removal with blob-based morphological reconstruction for error correction. In IEEE international conference on acoustics, speech, and signal processing (ICASSP 2005). Philadelphia, PA, USA.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nikolaos Katsarakis
    • 1
  • Aristodemos Pnevmatikakis
    • 2
  • Zheng-Hua Tan
    • 1
  • Ramjee Prasad
    • 1
  1. 1.Center for TeleInFrastrukturAalborg UniversityAalborgDenmark
  2. 2.Athens Information TechnologyPeania, AthensGreece

Personalised recommendations